Water Storage Tank Painting, Cleaning, and Rehabilitation, Worcester, MA

CLIENT: City of Worcester, Massachusetts

Chester Street 0.5 million gallon water storage tank in Worcester, MA

PROJECT: Chester Street 0.5 million gallon water storage tank painting, cleaning, and rehabilitation

THE CHALLENGE: The Chester Street water storage tank required evaluation, repair, cleaning, and painting of both the interior and the exterior. The tank is located in a heavily populated residential neighborhood and the exterior surface had high levels of lead in the paint. Therefore, special attention to lead contamination, noise, and construction debris was required. In addition, determination of the effects of taking the tank offline were required before any work could be started.

THE SOLUTION:  Analysis of the Super High Service Area using the verified hydraulic model was conducted, and the model was run under extended period simulation (EPS) to evaluate the potential pressure problems within the service area. As a result, operational modifications to the existing pump stations and service zones were recommended. Working only during daylight hours while keeping noise and debris to a bare minimum, construction crews completed miscellaneous repairs including replacing the anchor bolts, installation of overflow support brackets, modification of the access ladder, modification of the roof ladder, repair of the upper level sway rod, extension of the balcony handrail, installation of a roof handrail, and replacement of the roof finial vent. During the exterior abrasive cleaning, a containment system was utilized to prevent lead from getting into the air and soil. Once all repairs and cleaning were completed, the interior and exterior of the elevated tank were painted.

PROGRESS: Two years later, the tank is still in pristine condition, as shown in the photo above.

Asset Management-based Water Distribution System Study, Mountainaire, AZ

CLIENT: Ponderosa Utility Corporation, Arizona

PROJECT: Mountainaire asset management based water distribution system study to assist with prioritizing water system improvements

THE CHALLENGE: Mountainaire is a small water distribution system with limited manpower and revenue resources, and the operation and maintenance of the system is often reactive rather than proactive.

THE SOLUTION:
Tata & Howard successfully helped secure WIFA funding for the completion of the study which provides guidance to the PUC on how the system operates, what improvements are needed for efficient operation and continued maintenance of the system, and a prioritized approach to assist in funding and implementation of projects. This asset management based water distribution system study addresses undersized deteriorating water mains, above grade assets, and the energy efficiency of the pumping system. The study evaluates the system as a whole, based on above grade and below grade assets. Above grade assets are evaluated based on remaining useful life expectancy. Water mains are based on hydraulic capacity, criticality, and risk of failure. A hydraulic model was created for the study.

PROGRESS: Using the findings of the study, we are currently providing engineering services to evaluate flow and pressure requirements for the existing Kiowa Site booster pump station in order to construct a constant pressure pumping system to replace the existing booster pump and hydropnematic tank system that is old and failing.

On-Call Water Engineering Services, Franklin, NH

FranklinNH_water treatment facility

Tata & Howard has been assisting the City of Franklin, New Hampshire with general water engineering services since 2009. The Tata & Howard team has managed several phases of work, including the design and construction of the water treatment plant and distribution system improvements.

The first phase was the design and construction of 2,500 linear feet of water main on Hill Road to connect a new water treatment plant to the City’s distribution system.  This project also involved use of four bioretention systems to treat and manage stormwater from the roadway, and was constructed in 2010.

The second phase of our work with the City included the design and construction of two parallel 2,500 LF sections of 12-inch diameter HDPE crossings beneath the Pemigewasset River using horizontal directional drilling to transport water from the City’s Franklin Falls Well to the water treatment plant site.

Tata & Howard managed the survey and geophysical studies and prepared a Preliminary Design Report and Environmental Review documents for several phases of work.  The City’s wells are surrounded by lands controlled by the US Army Corps of Engineers, which required that we complete an extensive permitting process to secure permissions for the final design of the project.

Tata & Howard completed design, construction, permitting, and funding applications for a 1,000 gallons per minute groundwater treatment plant to remove iron and manganese from three of the City’s wells. The plant has four pressure filters containing Greensand Plus media and using sodium hypochlorite for oxidation and sodium carbonate (soda ash) for pH adjustment. This plant went online July 9, 2012.

Tata & Howard provided design services for the construction of a new prestressed concrete tank at the site of an existing tank. The existing tank was in poor condition and due to the site characteristics, it was determined that construction of the new tank on the existing foundation of the old tank would be the best option.  A second tank on the site was demolished in 2013 and a new prestressed concrete tank will be constructed in its place.

Tata & Howard also conducted a full water system analysis for the City of Franklin, New Hampshire by utilizing our proprietary Capital Efficiency Plan™ methodology.  Our CEP involved creating a model of all water infrastructure in the City including sources, pump stations, treatment facilities, storage facilities, transmission, and distribution lines. Using our GIS modeling software, the system was calibrated based on fire flows in an attempt to accurately replicate the existing system. We then pinpointed deficiencies within the system based on a custom rating scale given to multiple criteria such as age, break history, material type, criticality and size. Recommendations were made for improvements in order of need. The study renewed both above ground and below ground assets. Funding for this study was in part from an Asset Management Planning Grant from NHDES.

SaveSave