Dam Safety Awareness Commemorates an Epic Flood

The Johnstown Flood of 1889

It had been raining heavily for several days in late May of 1889.  People living below in the narrow Conemaugh Valley were eager for the spring rains to end. Just a month earlier, deep snow had lined the steep ravines of the Allegheny Mountains range and the ground was sodden with the heavy spring runoff. Floodwaters at the South Fork Dam high above the City of Johnstown, Pennsylvania were causing the lake level to rise, threatening to overtop the large earth embankment dam.

Before the dam breachAs the spring rains continued, life was about to change for the working-class city of 30,000 and other communities beneath the South Fork Dam.

Originally constructed in 1852, the South Fork Dam provided a source of water for a division of the Pennsylvania Canal. After a minor breach in 1862, the dam was hastily rebuilt creating Lake Conemaugh. By 1881, the dam was owned and maintained by the South Fork Fishing and Hunting Club, who created a recreational area by the large lake, enjoyed by their elite clientele from nearby Pittsburgh.

Lake ConemaughFor the pleasure of their private members, club owners soon began modifications to the dam. Fish screens were installed across the spillway to keep the expensive game fish from escaping. The dam was lowered by a few feet so that two carriages could navigate the carriage road to the clubhouse. Relief pipes and valves that controlled the water level and spill off from the original dam were sold off for scrap, and rustic cottages were built nearby.

Ignored Warnings

Notoriously leaky, repairs to the earthen dam had been neglected for years.  As torrential rains came down, swollen waters from the lake put tremendous pressure on the poorly maintained dam. With fish screens trapping debris that kept the spillway from flowing and with no other way to control the lake level, the water kept rising.

Aftermath of floodClub officials struggled to reinforce the earthen dam, but it continued to disintegrate. When the lake’s water began to pour over the top, it was apparent that a catastrophic collapse was inevitable and imminent.  Frantic riders were sent down the valley to alert the local communities and tell them to evacuate.  Sadly, few residents heeded the alarm being so often used to the minor seasonal flooding from the Little Conemaugh river.

This time, however, the flood danger was much more serious and deadly.

On May 31, 1889 at 3:10pm, the South Fork Dam washed away, leaving a wake of destruction that killed 2,209 people and wiped the City of Johnstown off the map forever. It took only 10 minutes for the raging torrent of 20 million tons or about 4.8 billion gallons of water to rip through the communities of South Fork, Mineral Point, Woodvale, and East Conemaugh.

Along the way, the deluge accumulated everything in its path, including all sorts of debris—from city buildings, houses, and barns. Piles of boulders, trees, farm equipment, rolls of barbed wire, horse carriages, and railroad cars churned in the turmoil. Embroiled in the devastation were also animals and people—both dead and alive.

By the time the raging waters reached Johnstown at 4:07 pm, the mass of debris was a wave 45-feet-tall, nearly a half mile wide and traveling at 40 miles per hour.

Despite the shocking immensity of this tragedy, relief efforts to the ravaged communities began almost immediately. Emergency shelters for homeless residents popped up and the grim task of cleaning up began.  Volunteers and donations poured in from across the country and world, sending tons of supplies and help. One of the first to arrive was Clara Barton, who had founded the American Red Cross just a few years earlier.

aftermathIt would take months to sift through all the wreckage to find the bodies and years to fully recover from the aftermath.

Lessons Learned

It is widely thought the South Fork Fishing and Hunting Club was to blame for the catastrophic failure of the South Fork Dam. Members of the club neglected to properly maintain the dam and made numerous dangerous modifications. Lowering the dam crest to only about four feet above the spillway severely impaired the ability of the structure to withhold stormwater overflow. The missing discharge pipes and relief valves prevented the reservoir from being drained for repairs and the elaborate fish screens clogged the spillway with debris. The club had also been warned by engineers that the dam was unsafe.

flood damageA hydraulic analysis published in 2016 confirmed what had long been suspected, that the changes made to the dam by the South Fork Fishing and Hunting Club severely reduced the ability of the dam to withstand major storms.1

The South Fork Dam was simply unable to withstand the large volume of stormwater that occurred on that fateful day on May 31, 1889.

Although the South Fork Fishing and Hunting Club failed to maintain the dam, club members were never legally held responsible for the Johnstown Flood after successfully arguing that the disaster was an “act of God.”

Due to what many perceived as an injustice and outrage towards the wealthy club members, American law was ultimately challenged and “a non-negligent defendant could be held liable for damage caused by the unnatural use of land”. This legal action eventually imposed laws for the acceptance of strict liability for damages and loss.

National Dam Safety Awareness Day

On May 31st, we commemorate the catastrophic failure of the South Fork Dam by recognizing this day as National Dam Safety Awareness Day.

The Johnstown flood or the Great Flood of 1889, as it was later known as, was the single deadliest disaster in the U.S at the time. This tragedy, 129 years later, is still a harsh reminder of the critical importance of the proper maintenance and safe operation of dams.

Earth embankment dams may fail due to overtopping by flood water, erosion of the spillway discharge channel, seepage, settling, and cracking or movement of the embankment.

Routine dam evaluations and inspections, as required by law, can identify problems with dams before conditions become unsafe.  Dams embankments, gatehouses and spillways, like other structures, can deteriorate due to weather, vandalism, and animal activity.  Qualified engineering firms can perform soil borings, soil testing, stability analyses, hydrologic and hydraulic modeling for evaluating spillway sizing and downstream hazard potential, arrange for under water inspections by divers, permitting, and assistance in applying for funding for repairs. Also required, are Emergency Action Plans (EAP) that identifies potential emergency conditions and specifies preplanned actions to be followed in the case of a dam failure to minimize property damage or loss of life.

The required frequency of dam inspections will vary depending on the state, but generally are based on hazard classification, with high hazard dams requiring more frequent inspection.   Generally dam inspections should be performed every two years for high hazard dams, unless the state requires more frequent inspections.  The best time of year for inspections is in the fall, when reservoir levels are typically low, and when foliage and tree leaves are reduced, allowing improved visibility around the dam.

A wealth of information on dam safety awareness, can be found at the Association of State Dam Safety Officials website






Infrastructure Week 2015: Saving Our Nation’s Water Infrastructure

“It is very, very difficult to run a first-class county or city on second-rate infrastructure.” —Commissioner Melanie Worley, Douglass County, CO

showerInfrastructure. It’s something we take for granted every single day — when we make coffee, flush our toilets, or drive to work. Infrastructure is what keeps our economy moving and our lives healthy. The virtual eradication of water-borne illnesses such as cholera and typhoid fever are the direct result of improved water and wastwater infrastructure, and the economic growth and strength of the past 50 years is due largely in part to our extensive transportation system. Unfortunately, America’s infrastructure is now past its prime and aging fast, and if it is allowed to fall into total disrepair, the long-term negative economic impact to our nation would be devastating.

Infrastructure Week is a grassroots, stakeholder-driven movement whose affiliates span the nation and represent all sectors of the economy and civil society – from local chambers of commerce to labor unions to trade associations and private companies. Together, the coalition is united around delivering to Congress and the American people the core message of Infrastructure Week: Investing in America’s Economy. Infrastructure Week is bringing together thousands of stakeholders in Washington and around the country to highlight the critical importance of investing in and modernizing America’s infrastructure systems, and the essential role infrastructure plays in our economy.1

U.S. Infrastructure

rusty bridge
Corroded struts on a bridge

When we think of infrastructure, our primary focus is frequently on what we can directly see — our transportation system. Admittedly, our roads, bridges, railways, airports, and seaports are in desperate need of attention. Decades of neglect have left us with a crumbling transportation system resulting in productivity losses and safety concerns. One out of every nine of the nation’s 70,000 bridges is considered structurally deficient, and 42% of America’s major urban highways remain congested, resulting in an annual cost of about $100 billion in wasted time and fuel costs. Yes, our transportation system is certainly at risk. However, our water infrastructure is also in critical need of attention, including drinking water, wastewater, and stormwater systems as well as our nation’s dams.

Water Infrastructure

What are some typical tasks in the daily life of the average American? Take a shower, make coffee, prepare meals — maybe run a load of laundry or water the lawn. It is so easy to take these simple, everyday actions for granted, but they all rely on something we largely cannot see: water infrastructure. Water infrastructure isn’t just a few underground pipes. According to the EPA, water infrastructure includes all the man-made and natural features through which water is treated and moved. And while it is all part of the water environment, it is conducive to think about infrastructure in terms of drinking water, wastewater, and stormwater. Drinking water infrastructure includes lands in source water areas, reservoirs and storage, treatment plants, and distribution systems; wastewater infrastructure includes collection systems and pipes, pump stations, treatment plants, and septic systems; and stormwater infrastructure includes catch basins, stormwater pipes, green infrastructure approaches that infiltrate and manage water where it falls, and land management practices that keep runoff from adversely impacting surface water or groundwater.2 And let’s not forget dams. The U.S. has over 84,000 dams, 14,000 of which are considered high hazard, meaning that failure of the dam would likely cause the loss of life. Even more concerning is the fact that funding is simply not available for inspection and maintenance. For example, South Carolina has 2,380 dams, and the state employs only one full-time inspector and one half-time inspector to inspect them all.

Infrastructure Report Card

infrastructure report card
ASCE 2013 Infrastructure Report Card

So how does our nation’s infrastructure rate? In 2013, the American Society of Civil Engineers (ASCE) issued a report card giving an overall grade of D+, with drinking water, wastewater, and dams each receiving a D. Hazardous waste also received a D, which is significant because site cleanup is imperative to the safety of our nation’s water supply. The report, which is issued every four years, also noted that in order to bring our infrastructure up to par by 2020, the United States would have to invest $3.6 trillion. And while $3.6 trillion may seem daunting, the cost of allowing the nation’s infrastructure to crumble would be exponentially higher. Effective water infrastructure is imperative for maintaining public health, and a significant component of our nation’s economic viability.

Much of our nation’s water infrastructure dates back to WWII or earlier, with some east coast communities still using pipes that were installed in the late 1800’s. The Clean Water Act passed in 1974, and with it the country saw a boom in construction of wastewater treatment plants, many of which are now 30-40 years old, and likely in need of rehabilitation or replacement. The useful life cycle of pipes and treatment plants varies greatly, and is largely dependent on materials used, environment, and upkeep. In fact, some pipes from the early 1900’s are in better condition than those that are half their age. Therefore, it is critical that communities utilize methodologies such as Capital Efficiency Plans™ that evaluate the actual condition of critical components of infrastructure so that they make the most effective use of their very limited infrastructure dollars.

In 2002, the U.S. EPA released the Clean Water and Drinking Water Gap Analysis Report, which compared America’s drinking water and wastewater infrastructure needs to the available revenues of utilities. The report showed a projected gap in funding of over $500 billion over the next 20 years. And that’s just straightforward funding. These estimates do not include factors such as population growth or climate change, which will likely increase the funding gap significantly. So where do we start?

Finding a Solution

First and foremost, we must find a way to close the funding gap, which will require a multi-faceted approach. Community outreach and education on the value of water and on our nation’s critical infrastructure needs will be paramount as utilities request higher rates and better conservation practices to implement improvements and meet growing demand. And while rate increases will provide a portion of the much-needed funding, and conservation will help lower demand, utilities will still need to execute careful asset management in order to effectively improve our infrastructure long-term. In addition, implementation of effective management practices will dramatically increase utilities’ efficiency and sustainability. In fact, the EPA and six major professional associations in the water sector came together to develop and advocate an approach through the Effective Utility Management (EUM) partnership, which detailed ten attributes of effectively managed water sector utilities along with a framework for implementation in order to assist utilities with management practices in today’s challenging and complex climate.

business handshakeBut utilities and consumers alone will be unable to carry the full burden of the funding gap, and so we must look to more creative solutions. Already enacted in 2014 as part of the Water Resources and Reform Development Act, WIFIA provides low-interest federal loans for up to 49% of large drinking water, wastewater, and water reuse projects. Another option includes tax incentives for industry to implement water efficiency and recycling/reuse projects. These incentives will encourage more active involvement from the private sector, who many believe hold the key to funding the infrastructure of the future. In recent years, as public funding has drastically decreased while the need for infrastructure improvements has expanded, utilities and governments have become increasingly interested in public-private partnerships, or P3s. Of special note is the fact that the federal government is now encouraging and even providing assistance to the private sector to fund infrastructure. If current trending continues, it seems likely that P3s will hold a significant role in the future of water and wastewater infrastructure funding.

In Conclusion

dam inspection
Bunnells Pond Dam, CT, inspected by Tata & Howard in April 2015

In the United States, we have come to expect and even take for granted safe, clean drinking water at the turn of a tap and wastewater neatly whisked away without giving it a second thought. But if we take a moment to think about our lives without water infrastructure, we quickly realize how much we depend on it, and how important it is to maintaining a healthy, viable economy and country. Therefore, it is imperative that we collectively research and implement innovative ways in which to rehabilitate and replace our nation’s failing water infrastructure.

“For the U.S. economy to be the most competitive in the world, we need a first class infrastructure system,” said the ASCE report. “We must commit today to make our vision of the future a reality—an American infrastructure system that is the source of our prosperity.”