3 Sustainable Clean Water Ideas for a Warming World

Climate Change Brings New Innovation to the Water Environment

The summer of 2018 saw devastating fires blazing all over the world. Nearly 100 people died in raging fires across the southern coast of Greece. More than 50 wildfires scorched Sweden where the temperature north of the Arctic Circle soared into the 90’s causing drought conditions. Record breaking temperatures across the globe from Montreal to Great Britain topped 98 degrees this summer.  In Japan, 22,000 people were hospitalized when temps climbed to 106 degrees. And, in normally cool Oslo, the thermometer climbed to 86 degrees for 16 consecutive days. From Southern California and Arizona to India and Pakistan, withering heat reached a deadly 110 degrees that parched the environment.

ThermometerThe most alarming news is the hottest temperature ever reliably recorded reached 124.3 degrees in Algeria this July.

Fires, heat and drought of this scope and scale seem to be becoming the new normal. These extreme events point to a planet that is warming and perhaps faster than scientists have predicted.

Although the effects of climate change may vary widely in different geographic regions, those areas already hardest hit with drought and arid conditions may be in the most critical need of clean drinking water.

This crisis will only get worse as the earth’s population conceivably could grow exponentially in the next 50 years and adequate supplies of water become even more scarce. In addition to supplying all these thirsty people with clean water, the chilling paradox is the increased demand on already-scarce resources means there is a greater chance that existing water sources will become polluted by human waste, industrial toxins, and contaminated agricultural runoff.

It is human nature to postpone change and sacrifice as long as possible. But it is clear that public service announcements warning residents to save water, take shorter showers, plant resilient gardens, and conserve, is not going to be enough to help avoid a global water shortage.  Fortunately, scientists and researchers are working diligently to solve some very complex problems to provide innovative and sustainable clean water solutions for the future.

Here are three cutting edge ideas for sustainable water supplies that just may help a warming world.

Ancient Bacteria for Modern Water Purification

Anaerobic or oxygen-averse bacteria to treat wastewater is back in vogue… after a billion years. When the earth was a toxic primordial goo, anaerobic bacteria thrived in the oxygen deprived world forming the first signs of life.  Environmental engineers at Stamford University are now bringing back these ancient microorganisms as a more cost-effective wastewater treatment process.

Primordial-bacteriaWastewater treatment plants that use aerobic bacteria must provide oxygen with huge and costly electrically powered blowers for these microorganisms to survive. Anaerobic bacteria treatment processes do not need oxygen and use considerably less energy, making the wastewater treatment process more economical to operate. In addition to saving money, engineers believe these anaerobes can filter household and industrial chemicals better than conventional treatment plants.

Full-scale plants utilizing anaerobic bacteria may soon be capable of processing millions of gallons of wastewater per day into refreshing clean water.

Mega Scale Desalination

Desalination plants may not have been around as long as ancient bacteria, but this technology is not a new concept either.  What is news however, is the increasing role desalination will have in the future. Israel’s Sorek desalination plant is the largest seawater reverse osmosis (SWRO) desalination plant in the world providing 627,000 cubic meters per day (m3/d) or the equivalent to about 166,000,000 gallons of water per day (gpd) to Israelis.

desalination-plant
Shawaikh Reverse Osmosis (RO) desalination plant in Saudi Arabia.

Desalination plants which were notoriously expensive energy hogs have become less energy-intensive as technologies have improved. Using renewable energy, such as solar, wind and geothermal along with advanced technologies including thin-film nanocomposite membranes, captive deionization (most suitable for brackish water), forward osmosis, and metal–organic framework (MOF) biological cell membranes that requires very little water pressure, water desalination is becoming more efficient and cost effective. The new cutting-edge membranes can even filter out precious metals such as lithium used in batteries.

Saudi Arabia, the largest producer of desalinated water in the world with its 32 desalination plants and growing, will soon be producing a historic 5 million m3/d or the equivalent of about 1,321,000,000 gpd, a global record of desalinated water. Benefiting from this leading-edge technology, Cape Town South Africa may have averted a catastrophic “Day Zero” when the City’s first desalination plant went online, preventing a water doomsday for its residents.With the world’s oceans holding about 96.5 percent of all Earth’s water and with more innovation, desalination may prove to be this thirsty world’s salvation.

 

Drinking Water from the Air

Another old idea that is gaining favor is converting fog into drinking water. Super-sized moisture collection systems could allow people living in coastal or mountainous areas to convert fog into safe drinking water. Collection traps are made from a 3D mesh that can withstand high wind speeds, while still retaining and accumulating water in storage tanks. With a variety of sizes available, these fog systems can be used for individual needs or supplying water for entire villages.

fog-nets
Super-sized fog nets can capture moisture in coastal or mountainous areas to convert fog into safe drinking water.

Combine this idea with giant Atmosphere Water Generators (AWG), which takes moisture or humidity directly out of the air and converts it into potable water.  Even in the driest of lands, the air is loaded with water molecules and enough drinking water converted from AWG’s could provide communities with a continuous and sustainable source of clean water.

On a large scale, the AWG units can be mounted on the roof-tops of commercial or residential buildings.  When powered by renewable energy, these systems can create safe local drinking water efficiently and economically. Water districts and municipalities managing these units, can provide as much as 55 m3 /d or about 14,500 gallons per day, enough to service each building independently with water.

AWG Towers
Large scale Atmosphere Water Generators can be installed on roof tops.

Collected water from both fog collection systems or AWG’s may seem farfetched. But consider this, 80 percent of California’s water goes to irrigate farms and the other 20 percent of water use goes to urban use. Collected water from the air could be used to irrigate crops or other commercial watering needs.

Water conservation and alternative technologies such as fog collection systems and AWG units can supplement our increasing demand for clean water and these ideas just might may make a difference.

 

The Future is for Innovation

Combating climate change and managing our depleting water resources is a reality we can’t ignore. The devasting fires, drought and heat from 2018, is a reminder that our actions today may help avert a global catastrophe in the future. These innovative ideas and others still in development are one step forward to a more sustainable world.

Our future depends on it!

International Beer Day: Celebrating Water Efficient Breweries, Take 2

5200218267_2215c03778_o-1024x683In honor of International Beer Day, we are taking a look at what breweries are doing to conserve the number one ingredient in brewing beer: water. Due to water shortages, increased demand, and heightened awareness, many breweries have taken steps to increase water efficiency and to implement water saving techniques in their brewing. Utilizing a myriad of methodologies and technologies, an increasing number of today’s breweries have begun to focus on brewing beer with water efficiency and conservation at the forefront of their business.

Anheuser-Busch InBev

Anheuser-Busch-AgriMet-300x200The undisputed behemoth of the beer world with 25% of the global beer market, Anheuser-Busch InBev has implemented water-saving measures in many ways. Some of its plants use reclaimed water for equipment cleaning, irrigation, firefighting, and other local uses, such as watering a soccer field in Peru and manufacturing bricks in Brazil. And, as would be expected from such an enormous, influential company, Anheuser-Busch InBev is piloting agricultural programs that it hopes will spread to all facets of agriculture. To start, they have initiated a “Smart Barley” program with 2,000 barley growers in Idaho and Montana. Since agriculture accounts for 95% of the water used in beer making, increasing agricultural water efficiency is the key to breweries becoming better water stewards. Utilizing sensors in the field, cooperative programs, and its own hybridized, drought-resistant seeds, Anheuser-Busch InBev hopes to decrease agricultural water usage by 25% over the next two years.

Even before the implementation of its agricultural program, Anheuser-Busch InBev had managed to reduce its water footprint to the point that it now uses less water than any other major brewer. As of this writing, the company uses about 3.2 bottles of water for each bottle of beer, and the industry average is seven bottles of water per each bottle of beer. In fact, from 2013-2014, Anheuser-Busch InBev saved as much water as is used in the manufacture of four billion cans of Budweiser.

MillerCoors

Barley requires 237 gallons of water per every pound grown
Barley requires 237 gallons of water per every pound grown

MillerCoors is also a giant in the beer industry with 30% of the American beer market. Like its major competitor Anheuser-Busch InBev, it also has an Idaho-based pilot project called the Showcase Barley Farm in Silver Creek Valley, Idaho. Utilizing precise irrigation techniques and hardier crop planting, MillerCoors is researching the best ways to increase its water efficiency. Already a success in 2011, Showcase Farms saw a 9% reduction in water usage by precision irrigation alone.

MillerCoors has also implemented water efficiency and conservation measures at its breweries such as utilizing recirculated water rather than freshwater for cooling, reusing wastewater for non-potable uses, cleaning cans with ionized air rather than water, sanitizing systems with bleach instead of hot water, and installing waterless lubrications throughout their operations. The water reclamation system in their Milwaukee brewery alone saves 100 million gallons of water per year. The company uses 3.53 bottles of water for each bottle of beer it produces — just a tad more than Anheuser-Busch InBev — but it hopes to slash its water footprint an additional 15% by 2020.

Both Anheuser-Busch InBev and MillerCoors have made huge strides towards water efficiency, and because of their massive size, the impact is significant. However, many smaller craft breweries are doing just as much — and in many instances, more — to become water and environmental stewards.

Full Sail Brewing Company

Screen-Shot-2015-08-06-at-1.43.53-PM-300x215Oregon-based Full Sail Brewing Company is fully committed to water conservation. They operate a hot water recovery system that saves over three million gallons of water per year. Employees work four ten-hour days, which saves another three million gallons of water per year. They have installed special filters to maximize malt extract while minimizing water usage, they’ve reduced spray nozzle apertures on bottle and keg washers, and they’ve reduced cooling water usage by adding a glycol chiller in tandem with their heat exchanger. These measures save an additional 4.1 million gallons per year. The result? The forward thinking company uses just 2.5 bottles of water for each bottle of beer produced — the lowest ratio we have found. But they don’t stop there. Full Sail Brewing operates its own voluntary wastewater treatment plant, which reduces the load to the municipal treatment plant by pre-treating the wastewater. In addition, they distribute their treatment plant’s biosolids to local farmers and an orchardist for fertilizer.

Cape Cod Beer

Hyannis, Massachusetts-based Cape Cod Beer utilizes water reclamation and conservation efforts in their brewing, but they take it a step further. Their beers are only sold in refillable kegs or growlers, and they are passionate about recycling. In addition, they donate all used and leftover grain to local farmers for feed or compost, and they were recently certified “Cape & Islands Green” Level 1.

California Brewers

cloverdale-300x199
Photo by Kerrie Lindecker The City of Cloverdale celebrated the completion of two new wells during a ribbon cutting

Bear Republic Brewing Company, whose corporate office and larger brew house are located in Cloverdale, California, actually partnered with the City of Cloverdale to dig two new water wells, which went online last August. Because the City didn’t have the funds for the new wells, Bear Republic prepaid several years of its water fees — $466,000 — in order to allow the city to complete the project on time and under budget. Bear Republic also conducts regular audits for leaks, practices conservation and reclamation in its operations, and is installing a wastewater pre-treatment plant that will generate heat and electricity with the methane it produces as well as reclaimed water for irrigation and cleaning.

In Escondido, California, the nation’s tenth largest craft brewer, Stone Brewing Company, treats all of their brewing wastewater — not to be confused with restaurant or restroom wastewater — with an aerobic digestion and filtration process. The reused water is pure and they use it for cleaning. “From a good brewing practices standpoint, it’s good to watch water usage, especially when you live in a dry area like we do,” explained Mitch Steele, Stone’s Brew master. He also added that they test the reclaimed water frequently and that, if regulations allowed, he wouldn’t hesitate to drink it.

Adding to their already environmentally friendly business practices, both Stone Brewing and Bear Republic have been proactive in sharing their practices and knowledge with the rest of the craft beer community through webinars and on-site tours.

Brewers for Clean Water

So far, over 50 craft breweries, including eight New England breweries, have joined the National Resource Defense Council’s Brewers for Clean Water initiative. The program aims to spread awareness of the Clean Water Act and to support initiatives that protect and conserve our nation’s water. “As we continue to see the craft beer segment grow, we as brewers owe it to the communities we live, work, and play in to be mindful of protecting our waterways as we strive for growth that is environmentally and socially responsible now and down the road,” said Mat Stronger of Allagash Brewing Company, a Portland, Maine-based brewery that is active in the Brewers for Clean Water initiative.

Jester King Brewing with Harvested Rainwater

Jester King's rainwater collection tanks
Jester King’s rainwater collection tanks

Austin, Texas-based Jester King Brewery recently purchased 3,000-gallon rain water collection tanks that will collect rainwater from the roof of both their brewery and adjacent beer hall. They expect to capture an estimated 10,000 barrels of rainwater per year that will be disinfected using ultraviolet and reverse osmosis purification and then be used in their brewing process.

Beer Made with 100% Reclaimed Water

Clean Water Services, a wastewater treatment utility that serves the Portland, Oregon metro area, asked for approval from the state to allow members of the “Oregon Brew Crew” to use recycled sewage water from its Forest Grove plant for beer-making. They received initial approval from the Oregon Environmental Quality Commission and the Oregon Health Authority, but will need further approval for a recycled water reuse plan before forging ahead. Last year, the Oregon Brew Crew produced test batches of beer made from 30% reclaimed water, which met with rave reviews. But, according to the dozen brewers, using 100% reclaimed water will be a more exciting challenge.

“I’m trying to think of a really cool recipe. When they told us 100 percent we’re like oh man, first the names, then the recipe comes later. And I’m excited,” said Lee Hedgmon, president of the Oregon Brew Crew.

Clean Water Services believes that educating the public about recycled water will lead to its ultimate acceptance, and they don’t think there’s any better way to start that conversation than with beer.

Sewage Beer

waste-water-beer-300x152

Really. It’s called Activated Sludge, has a radiation symbol on its label, and is brewed with purified Milwaukee Metropolitan Sewerage District wastewater plant effluent that has NOT gone through the final cleaning process typically necessary for potable reclaimed water.

Theera Ratarasarn, a wastewater engineer with the Wisconsin Department of Natural Resources, enjoys home-brewing beer to relax after his two young sons have gone to bed. After doing some thinking, he decided he wanted to raise awareness of the quality of plant effluent, and figured the best way to do so was with his evening hobby.

“I wanted to get people talking,” he said “There’s a potential use for what we discharge into lakes and streams.”

Ratarasarn filtered, treated, distilled, and tested the water before beginning to make five gallons of his Activated Sludge, a wheat ale with 5.15% alcohol by volume. And then came the true test. Ratarasarn presented his sewage brew to a taste panel at Lakefront Brewery, where Activated Sludge competed against Lakefront Wheat Monkey. The result? “It’s one of the better home brews I’ve ever had,” stated Mitchel De Santis, who graded the beer a seven out of ten.

“Everybody I talk to wants one,” added Ratarasarn.

Brewing Up Water Efficiency

Breweries are some of the largest consumers of water, yet have proven that they are some of the most active conservationists. We’ve heard it before: everyone loves beer, so it is an easy way to spread awareness, start conversation, and implement efficiency and conservation techniques. While we may not be drinking sewage beer any time soon, we can all agree that U.S. breweries are doing their part in the water conservation effort — and that’s something to which we can raise a toast. Happy International Beer Day!

Climate Change and Water Conflict — Keeping the Wolf at Bay

The crisis of our diminishing water resources is just as severe any wartime crisis we have ever faced. —Jim Wright, U.S. Representative, The Coming Water Famine, 1966

water punchWater is life. No truer words were ever spoken, for without freshwater, life simply cannot exist. The first civilization in recorded history settled in Mesopotamia, or the “cradle of civilization” which is now modern day Iraq, Iran, Syria, Kuwait, and Turkey, due to its location between the Tigris and Euphrates Rivers. And since the dawn of history, water conflict has erupted when supply has become scarce.

worldpopThe first recorded water conflict took place in the “Gu’edena” region, known as the “edge of paradise.” King Urlama, who ruled Lagash from 2450 to 2400 BC, diverted regional water to boundary canals, which dried up boundary ditches and deprived Umma of water. Furthering his father’s work, King Urlama’s son cut off the water supply to Girsu, a city in Umma. Since this first recorded water war, water conflict has erupted regularly on planet Earth, with a high percentage of the conflict occurring in the Middle East.

Prior to the mid-twentieth century, the vast majority of water conflict came about as a result of a pre-existing war; that is, water was diverted or targeted as a military tactic. However, since the 1950s, targeted disputes over water access have increased exponentially, which should come as no surprise. After all, global population has nearly tripled in that time, from 2.5 billion in 1950 to 7.3 billion in 2015. And it continues to grow.

At the same time, climate change has begun to wreak havoc on global water supplies. Since 1950, the planet has warmed by approximately 1°, resulting in about 5.7% of the Earth’s total land area shifting toward warmer and drier climate types from 1950–2010. These warmer climates include expansion of arid climate zones and reduction in polar ice caps. And that’s just from one single degree. Experts predict that the earth’s temperature will increase five times that amount during this century alone, and unless we globally commit to taking climate action, at least one-third of the globe will fall into a state of near permanent drought by 2050.

40% of Israel's drinking water comes from desalination, like this IDE seawater desalination plant in Ashkelon
40% of Israel’s drinking water comes from desalination, like this IDE seawater desalination plant in Ashkelon

So what is the solution? Fortunately, global populations are taking notice, and nations have begun to work cooperatively towards a sustainable future. At the Paris Climate Conference held in December of 2015, water was of particular focus: the Paris Pact on Water and Adaptation to Climate Change in the Basins of Rivers, Lakes, and Aquifers was signed, and The Paris Call for Actions was officially launched. In addition, individual nations are implementing regulations and guidelines to provide for a more sustainable future. Many nations in the arid Middle East, including Kuwait, Qatar, Saudi Arabia, Israel, and the United Arab Emirates, have embraced desalination as a viable technology for years, and are now looking to reclaimed water to augment their water supply. British Columbia, Canada recently passed The Water Sustainability Act, which allows the government to manage surface water and groundwater as one resource, provide water users with greater certainty regarding their water rights, and establish clear rules about managing water during times of scarcity. The Act, which goes into effect early this year, was enacted to ensure that water stays healthy and secure for future generations of British Columbians.

Purple pipes and signs indicate reclaimed water, which is more frequently being used for irrigation in arid areas like California
Purple pipes and signs indicate reclaimed water, which is more frequently being used for irrigation in arid areas like California

In the United States, water conservation has been brought to the forefront of the public eye, and the EPA has implemented its Sustainable Water Infrastructure program to provide technical support and financial resources to states to increase water and energy efficiency in water, wastewater, and stormwater infrastructure. The goal of the program is to assist water and wastewater facilities in saving water and energy and reducing greenhouse gas emissions. Recycled wastewater is being used to recharge groundwater supplies and to irrigate crops, and the western hemisphere’s largest ocean desalination plant is currently under construction in California. Stormwater is now being viewed as a resource rather than a waste product, with Low Impact Development and sustainable stormwater management practices now commonplace. Engineers are working diligently to innovate energy efficient water conservation technologies, while municipal and governmental entities have been educating the public on the value of water and conservation techniques.

If climate change is allowed to continue uninhibited, people and nations will be forced to compete for water. As is evidenced by the unrest and violence in Syria and the resulting socio-economic devasation, drought and water scarcity exacerbate tensions and contribute to conflict. With increasing population and decreasing supply, there simply won’t be enough water to go around. Even water-rich communities will feel the effects of climate change. While parts of the planet dry up, high latitudes will experience extremely heavy rainfall that increases the level of pollutants, sediment, and nutrients in water, resulting in degraded water quality. Unless climate change is addressed, the global population faces a water crisis that will reach every corner of the globe. As Jean Chrétien, former Canadian prime minister and co-chair of the InterAction Council so eloquently stated,“The future political impact of water scarcity may be devastating. Using water the way we have in the past simply will not sustain humanity in future.”

SaveSave

Desalination: a viable option?

iceberg for water supply
Some people have suggested towing icebergs to places that need freshwater. Photo: SERPENT Project

Drought. Scarcity. Pollution. Climate change. Demand. Overpopulation. These are all issues with our nation’s water supply with which we have become all too familiar. Engineers and water systems are scrambling for solutions, and countless possibilities — some as basic as conservation and water bans and some as complicated as water reclamation and transporting icebergs — have been considered. Communities struggle to meet demand with dwindling supply and a limited budget, and many have begun to give desalination serious consideration.

Desalination, or the process of removing salt from water, used to be summarily dismissed as a supply option due to its expense and energy consumption. However, in light of the increase in water scarcity, desalination has become a feasible option for many water-stressed communities. Already commonplace throughout the Middle East, desalination plants are now popping up all over southern California and Texas. Let’s look at some facts about global desalination:

  • carlsbad desalination plant
    When complete, the Carlsbad, CA desalination plant will be the largest in the western hemisphere

    Dubai sources over 98% of its potable water supply from desalination

  • Global leaders in desalination are Saudi Arabia with 17% of global output, United Arab Emirates with 13.4%, and the United States with 13%
  • Nearly 70% of Israel’s domestic water consumption comes from desalination
  • Most desalination plants are in the Middle East, where energy is less expensive and environmental regulations are less stringent
  • Currently under construction, the $1 billion, 50 mgd Carlsbad desalination plant in Carlsbad, CA will be the largest in the western hemisphere when completed
  • Costing $2 billion, the Sydney, Australia desalination plant has not produced any water since 2012 due to high dam levels

desalination diagramThe most commonly utilized desalination technology is reverse osmosis (RO), which was invented in California in the 1950s. RO uses high pressure to force water through fine membranes that leave the salt behind. For every two gallons of salty water, only one gallon is made available as freshwater. The whole process utilizes an exorbitant amount of energy, with energy accounting for up to half the total cost of desalination. In fact, desalinated water costs about $2,000 per acre-foot, which is approximately the amount of water used by a family of four in six months. Because less salty water requires less energy for processing, the most cost-effective desalination plants treat brackish, or slightly salty, water rather than seawater.

desalination fish
Impinged fish

There are some environmental concerns surrounding desalination as well. The highly concentrated salt brine left behind requires disposal. However, because it is twice as dense as seawater, it sinks to the ocean floor and spreads, suffocating bottom-dwelling marine life. Therefore, the brine byproduct must be mixed with freshwater, typically in the form of treated wastewater or cooling water from a power plant, prior to being released into the ocean. In addition, fish and other marine life are often sucked toward the intake pipes where they are killed on the intake screens (impingement), and smaller marine life, such as plankton, larvae, and fish eggs, pass through the screens and are killed during the desalination process itself (entrainment). Fortunately, there have been some recent innovations to address these concerns. For example, subsurface intakes pull seawater from beneath the seafloor, virtually eliminating impingement and entrainment. An added bonus to subsurface intakes is the fact that the sand acts as a natural filter that pre-filters the water, reducing the plant’s chemical and energy usage.

central_valley_california
California’s Central Valley is largely agricultural and relies heavily on irrigation

This summer, HydroRevolution, a subsidiary of San Francisco-based agricultural and commercial water producer WaterFX, announced its plans to build California’s first commercial solar desalination plant in the state’s heavily agricultural Central Valley. The plant will run solely off solar thermal energy and will utilize Aqua4, a new desalination technology that produces only solid salt and freshwater, with zero excess discharge. In addition, it will utilize unusable irrigation water from a 7,000-acre ditch rather than seawater. The plant will provide the necessary freshwater for the area’s irrigation needs without the energy consumption or concentrated briny discharge of traditional desalination plants. Admittedly, having the 7,000-acre ditch from which to draw the water helps immeasurably, and isn’t an option for most other areas.

But desalination isn’t only being used in the southwestern part of the country. In Massachusetts, the Town of Swansea recently opened the first publicly held desalination facility in the Northeast. A coastal town, Swansea experienced a population boom that led to groundwater supplies running low, which in turn allowed seawater to seep into the aquifers. The result was a water crisis that forced the enactment of water bans, steep fines – and even left 30% of the town without water for a brief period one summer.

According to Robert Marquis, who has acted as Swansea’s water manager for over 40 years, “We just couldn’t support a burgeoning population or commercial growth,” he said. “Anything that came into Swansea, we were objecting to it if it was going to be water intensive.”

Designed with the help of Tata & Howard’s own John Cordaro, P.E., the Swansea desalination facility has been online for over a year, and took home a third place global finish at the 2014 Global Water Awards, losing only to Dubai, Singapore, and Sorek, Israel.

reverse osmosis membrane
A semipermeable reverse osmosis membrane coil used in desalination

There is one matter with RO that, while a non-issue in sunny southern Californian, is a primary concern to the Northeast: RO filters are delicate and highly intolerant of ice, and cease being functional below 36°F. To address this issue, Swansea installed two miles of pipes in order to sufficiently heat the incoming river water prior to its entering the plant.

For water-stressed Swansea, desalination has been a successful solution. But nearby Brockton, Massachusetts has not realized the same benefit from their desalination facility. Costing roughly $120 million, the plant was constructed to utilize brackish river water as opposed to seawater, which Brockton officials believed would make the whole process affordable. However, seven years later, the water produced by the Brockton desalination plant is still too expensive, so the city has turned to a local lake as its source, leaving the costly desalination plant largely in disuse.

While desalination is heavily utilized throughout the Middle East, it has only recently come under serious consideration in the United States. As water scarcity increases due to population growth, climate change, and growing demand, alternative water source options are receiving close attention. Once not even considered due to energy costs and environmental concerns, desalination has become a frequent and sincere topic of conversation for meeting future needs. And with further advances in technology that address both energy usage and environmental impact, there remains a strong possibility that desalination could become a widely acceptable solution nationwide. Now if folks could just get on board with water reclamation