Point of Use Water Filters Effectively Reduce Lead in Flint, MI Water

Point of Use Water Filters Effectively Reduce Lead in Flint, MI Water

In the last decade, the discussion of lead in drinking water has been on the rise. While the Flint, MI water crisis may have been a catalyst for the recent uptick in awareness, lead poisoning from drinking water is not isolated to Flint alone. Schools and homes across the country are at risk for unhealthy lead levels in their water. In fact, 15-25 million homes in the U.S. are still connected to lead pipelines that were laid before they were banned in the late 1980s. In addition, 43 percent of school districts serving 35 million students across the country tested positive for lead. Of those, 37 percent found elevated levels and reduced or eliminated exposure, according to the U.S. Government Accountability Office.  

lead contaminated water being displayed in a milk jug to show contamination levels.

In addition to water utilities adjusting water chemistry to minimize the possibility of lead dissolving into tap water, customers can also do their part to help reduce lead levels. Although the best way to eliminate lead exposure in water is by replacing lead service lines and interior plumbing, there are in fact ways to minimize exposure to meet the EPA’s Lead Action Level in your home. One of these ways is through point of use (POU) water filters. Properly installed POU filters can potentially protect all populations, including children and pregnant women.

A recent study published in the Journal of Environmental Science and Health, showed that POU filters effectively reduced lead in drinking water in a demonstration field study in Flint, Michigan.

Intro to Point of Use Water Treatment Devices

Filtration of tap drinking water in homes through POU treatment devices has gained popularity due to recent concerns of lead contamination from service lines and interior plumbing materials. According to the field study, many POU filters utilize an outer fabric of fiber surrounding a solid block primarily composed of activated carbon. Activated carbon is great for purifying liquids and gases.

Materials and Methods for the Study

Flint residents received PUR and BRITA filters [certified under NSF/ANSI-53 (total lead) and NSF/ANSI-42 (Class I particulate)] for the study. Filtered and unfiltered water samples were collected to assess whether the NSF/ANSI-53 and NSF/ANSI-42 certified POU filters being distributed in Flint were effective for the reduction of lead, regardless of influent levels above the certification criteria of 150 micrograms/L (µg/L).

* NSF/ANSI 42, 53 and 401 are the leading industry standards for filtration products and systems.

Subsequently, filtered and unfiltered water grab samples were collected at each selected sampling location, generally at the kitchen faucet. Samplers recorded field observations including the filter type/brand, filter indicator status, and the resident’s estimate of the time since the filter or cartridge was installed. All samples were collected from the cold-water tap, and three types of 1000-mL samples were collected from homes:

1. Filtered Water, Existing Filter – First, one grab water sample was collected through the existing water filter at the home (if present).

2. Unfiltered Water – Second, an unfiltered water grab sample was collected after removing the existing filter or turning the by-pass valve on the filter. No cleaning or flushing took place prior to the water grab sampling.

3. Filtered Water, New Filter – Third, after the installation and flushing of a new filter or replacement filter cartridge for approximately 2 min, a grab sample was collected through the newly installed filter or filter cartridge.

Field Study Results

Unfiltered Water Samples – The maximum lead concentration in the unfiltered water at the 345 sampling locations in this study was 4,080 µg/L , with approximately 4% of the unfiltered water samples above 150 µg/L and over 37% above the Food & Drug Administration (FDA) standard for bottled water (5 µg/L).

Filtered Water Samples – Over 97% of filtered water samples contained lead below 0.5 µg/L. The maximum lead concentration in filtered water was 2.9 µg/L, well below the bottled water standard.

Removal of Additional Metals – The sampling showed incidental removal of copper, iron, manganese, and zinc despite the filters not being certified to remove miscellaneous metals.

In conclusiuon, POU filters proved to be a reliable option for the reduction of lead in this study. Faucet-mounted point of use filters can be an important barrier against unpredictable lead release from lead service lines and/or plumbing materials.

To ensure effectiveness, POU filters should be replaced per manufacturer recommendations.

Interested in what else you can do to help reduce exposure to lead in your drinking water?

Quick Tips:

  1. Use cold water for drinking, cooking, or making baby formula. Boiling your water will not remove lead from water. In fact, lead concentrations will increase because water evaporates during the boiling process.
  2. Before drinking water from the tap, flush your pipes by running the water faucet, doing a load of laundry, or taking a shower.
  3. Be sure that your faucets screen (aerator) is clean.

6 Facts About Lead In Drinking Water

6 Facts About Lead In Drinking Water

Drinking Water contaminated with lead can be a health hazard.

Whether water comes from a Public Water System or a private well, water contaminated with lead is most likely the result from corrosion of the plumbing materials, lead pipes, or the service lines from the water main in the street to the building.

Here are some facts about lead contamination and tips to avoid lead in drinking water.

6-Facts-About-Lead-in-Drinking-Water

Please feel free to print and share our 6 Lead Facts Infographic with attribution to Tata & Howard, Inc.

National Lead Poisoning Prevention Week—Lead-Free Kids for a Healthy Future

lead-free-kids-for-a-healthy-futureOctober 23-29 is National Lead Poisoning Prevention Week 2016. Established in 1999 by the U.S. Senate, National Lead Poisoning Prevention Week (NLPPW) occurs every year during the last week in October and is now supported by the U.S. Environmental Protection Agency (EPA), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Health and Human Services (HHS), the U.S. Department of Housing and Urban Development (HUD), and the World Health Organization (WHO).  This year’s NLPPW theme of “Lead-Free Kids for a Healthy Future” underscores the importance of protecting our future by educating the public about the dangers and sources of lead poisoning and what can be done to prevent it. While lead-based paint is arguably the most common and hazardous source of lead exposure for young children, lead-contaminated drinking water has recently come under heavy scrutiny as an additional and very serious source of lead poisoning.

Siddhartha Roy / FlintWaterStudy.org
Siddhartha Roy / FlintWaterStudy.org

Lead contamination in drinking water has long been a problem, but it is now receiving the attention it deserves as a direct result of the catastrophe that took place in Flint, Michigan earlier this year. When Flint switched its water supply from Detroit to the Flint River, proper corrosion control measures were not implemented. The river water corroded old lead pipes, leaching lead into the drinking water. As a result, it is estimated that six to twelve thousand Flint children have been exposed to high levels of lead in their drinking water. But they are not alone. In the United States, over 500,000 children have elevated lead levels in their blood, and it is estimated that between seven and ten million American homes still receive their drinking water from lead service lines. In addition, many homes constructed prior to 1986 also have lead in their faucets, fixtures, and solder.

While elevated lead levels in the blood stream cause health issues at any age, these problems are most significant in young children under the age of six whose brains are still developing. Some of the health concerns associated with lead exposure are as follows:

  • Decreased IQ
  • Slowed growth
  • Inability to pay attention, hyperactivity, and ADHD
  • Learning disabilities and developmental delay
  • Anemia
  • Tooth decay
  • Decreased bone and muscle growth and poor muscle condition
  • Damage to the nervous system, kidneys, and/or hearing
  • Speech and language problems

lead_spotlight2Lead in drinking water cannot be detected through taste or smell, and the only way to know for certain if your drinking water has elevated lead levels is to have your water professionally tested. Typically, lead pipes are found in homes that were built prior to 1986 and in older cities. Older homes with private wells are also at risk of having lead in drinking water. While complete removal of all lead service lines, pipes, faucets, and fixtures is the most effective way to bring lead to safe levels in drinking water, it can also be prohibitively expensive. Therefore, the EPA has recommended the following steps to reduce lead in your drinking water:

  • Call your water provider to learn about the lead levels in your system’s drinking water, and to find out if the pipe that connects your home to the water main (e.g. the service line) is made from lead.
  • Use only cold water for drinking, cooking, and making baby formula.
  • Remember, boiling water does not remove lead from water.
  • Run water for 30 seconds to two minutes before drinking it, especially if you have not used your water for a few hours.
  • Regularly clean your faucet’s screen (also known as an aerator).
  • If you use a filter certified to remove lead, don’t forget to read the directions to learn when to change the cartridge. Using a filter after it has expired can make it less effective at removing lead.

During NLPPW, many participating communities and organizations offer educational and awareness events as well as free blood tests. For information on NLPPW events, contact your local health department, which can be found here. While lead poisoning is a serious concern for everyone, young children are most at risk, which is why NLPPW 2016 is focusing on our nation’s children. Through public education, investing in infrastructure, and best practices, together we can ensure that our nation has “Lead Free Kids for a Healthy Future.”

Subscribe-to-our-newsletter1

Water Crisis in the United States, Part 3: Lead in Drinking Water

24234972202_550138a446_o-300x202Part three of our four-part series on water crises in America is on lead contamination. Instances of lead in drinking water, such as the situation in Flint, Michigan, have become a hot topic in the media. Lead in drinking water is a problem that reaches far beyond the disaster in Flint, with the Environmental Protection Agency (EPA) stating that roughly 10 million American homes and buildings still receive water from service lines that are at least partially lead. When water has high acidity or low mineral content, it can cause these service lines to corrode and leach lead into the water supply. Without mitigation, water from lead service lines has the potential to cause adverse health effects, particularly in children.

The EPA states that, in the last three years, only nine U.S. states are reporting safe levels of lead in their drinking water. These include Alabama, Arkansas, Hawaii, Kentucky, Mississippi, Nevada, North Dakota, South Dakota, and Tennessee. This means that 41 states are consistently reporting higher than acceptable levels of lead in their drinking water. The problem is not only the lead service lines connecting water mains to homes and buildings, but also the lack of proper treatment to prevent corrosion of these lead pipes.

History of Lead Pipes in the U.S.

Residents of Flint, Lead solder holding pipes together can also contaminate the water that passes through your system.
Lead solder holding pipes together can also contaminate the water that passes through your system.

The use of lead pipes for water distribution has a centuries-old history. In the U.S., installation of lead pipes on a major scale began in the late 1800s, particularly in the larger cities. At one point, more than 70% of cities with populations greater than 30,000 used lead water lines. Lead pipes had two significant advantages over iron: they lasted almost twice as long and they were malleable enough to easily bend around existing structures. Of course, now we see the health risks associated with lead, and water systems across the country have taken steps to eliminate lead pipes in their distribution systems. Water companies and municipalities now must decide whether to replace all the lead pipe in their drinking water system, including home service lines on private property, or continue to add corrosion-control chemicals at the plant to prevent leaching of lead into the water supply.

Utilities and the Government Take Action

Water companies and municipalities across the country are working diligently to get lead out of our drinking water. Since replacing all of our nation’s lead piping may take over 20 years, utilities have found a short term solution to control the amount of lead in their drinking water. They are focusing on the treatment process and monitoring what makes up the drinking water. Introducing orthophosphates to the water supply and flushing all the standing water creates a scale of protective coating on the interior surfaces of lead pipes, reducing corrosion. This limits the amount of lead that leaches into the water and offers a short term solution as we figure out how to permanently replace all lead pipes from our water distribution systems.

Limescale-in-pipe-300x259
Orthophosphates added to treated drinking water has created a protective coating on the interior surface of this lead pipe.

In Wisconsin, the Madison Water Utility has become a national model for cities struggling with lead in their drinking water. They are the first major utility in the nation to demonstrate that a full replacement of both the public and the private portions of lead service lines is possible. This involved working with residents to remove lead service lines from their homes and nearby property. The project started in 2001 and has provided safe drinking water to 5,600 property owners. The plan, which was very controversial at the time, is now hailed as a model and has spurred other utilities into action. For example, Boston Water and Sewer Commission (BWSC) implemented a program that offers a credit of up to $2,000 and interest-free loans to assist homeowners who are willing to remove lead pipes on their property. BWSC also has a searchable online database for homeowners to see if their property has a lead service line.  Also, the Massachusetts Water Resource Authority (MWRA) announced earlier this year that it will provide $100 million to its member water communities to fully replace lead service lines, including residential lines. These utilities are shining examples of the many organizations taking a long term approach to this national crisis.

Recent news reports of lead in drinking water and the controversy surrounding testing methodologies have acted as a catalyst for public schools across the country to test their water. Unfortunately, many of these tests indicate high, potentially dangerous, levels of lead concentrations in public drinking fountains, sparking outcry from parents and prompting a series of public meetings. In response, the EPA changed lead testing regulations on February 29, 2016 and now require utilities to use wide mouth bottles, conduct no pre-stagnation flush, and to run faucets at typical flow rates when testing for lead — precisely the opposite of how testing had previously been conducted. While many people have been quick to blame utilities for lead in their drinking water and have even gone so far to suggest that utilities have been practicing testing “cheats,” they were in actuality following protocol issued by EPA.

The EPA is also considering changes to the Safe Drinking Water Act’s rules regarding lead, and an advisory panel has proposed a more proactive approach to replacing lead pipes. The proposal would encourage public water systems to replace lead pipes versus waiting for lead levels to spike to take action. This plan involves substantial increases in funding to water companies and municipalities for the replacement of lead pipes in both the public and the private portions of lead service lines, including residential lines. With this additional funding, water utilities across the country will be able to set goals for a permanent solution to our nation’s lead crisis. Admittedly, we have a long road ahead of us as many cities simply do not know the exact number or location of lead pipes in their system. Add to that the cost and person power required to replace our nation’s lead service lines, and it becomes apparent that a 100% lead-free infrastructure is still many years away.

What Can You Do?

When water sits stagnant in lead service lines for even a few hours, it picks up lead from the pipe, which can make using your faucet hazardous. Find out if your home is serviced by lead service lines by calling your local water department. This is especially important to homes built prior to 1980. If your home still has lead service lines, you can reduce the risk of lead contamination in your drinking water by taking some simple steps:

  • Call your State Department of Public Health for health information, or visit their website.
  • Run tap water until after the water feels cold. Flushing pipes in this way before use assures that you are not drinking water that has been sitting stagnant in pipes.
  • Never use hot water from the faucet for drinking or cooking, especially when making baby formula or food for small children. Hot water from your faucet has a higher chance of containing traces of lead. Instead, use cold water and heat it on the stove or in the microwave.

In Conclusion

Hands_in_Water_faucet-300x200

The good news is that lead contaminated water crises like the situation in Flint, Michigan have called for stricter regulations and replacement of nearly six million lead service lines nationwide. The not so good news is that we still have a long way to go to completely remove all lead in our water systems. Nearly all homes built prior to the 1980s still have lead solder connecting copper pipes, and some major U.S. cities still have 100 percent lead piping that delivers water from the utilities to homes and businesses. Replacing lead service lines is the safest way to prevent lead contamination, and public and private water companies must work together with state and national organizations to replace lead pipes in all of our water distribution systems. Solving our lead contamination crisis will benefit everyone if we work together for a permanent solution. After all, everyone deserves safe drinking water.
Subscribe-to-our-newsletter1