Powering Vehicles from Discarded Food: East Coast Meets West Coast

food waste graphic useLast month, Massachusetts Governor Deval Patrick signed into law the Commercial Food Waste Ban, which will go into effect on October 1, 2014. This law targets commercial institutions who produce more than one ton of organic waste per week, such as hospitals, restaurants, schools, hotels, and supermarkets. Once the ban takes effect, this waste food, which accounts for 25% of the waste stream in the Commonwealth, will need to be recycled rather than discarded. Recycling food waste has many advantages. First, it brings awareness to businesses to simply be more mindful in food ordering, preparation, and potential donation in order to decrease the overall amount of food waste they produce. Next, it decreases food waste in landfills, and thus mitigates the amount of greenhouse gas entering the atmosphere from decomposition. Finally, it provides a clean energy source. And that is something this country desperately needs.

Anaerobic digestion (AD) is one way to dispose of organic waste that has the added benefit of producing clean energy. AD uses microbes to break down organic waste in an oxygen-deprived chamber, producing biogas, a clean and potent energy. Biogas is produced not just from food waste, but from any organic waste matter, including human waste, and is a clean energy option for heating and cooling, electricity, and powering vehicles. Wastewater treatment facilities that currently incorporate AD in their treatment processes could potentially be modified to handle food waste as well, and the Commonwealth is offering up $1M in grant funding for public facilities to do just that. In fact, the first grant of $100,000 has already been awarded to Massachusetts Water Resources Agency (MWRA) to process food waste at its wastewater treatment plant on Deer Island.

AD eggs at Newtown Creek Wastewater Treatment Plant in Brooklyn, New York Courtesy of New York City Department of Environmental Protection
AD eggs at Newtown Creek Wastewater Treatment Plant in Brooklyn, New York, photo courtesy of New York City Department of Environmental Protection

Connecticut and Vermont have passed similar laws, but they are using a more gradual approach. Both states currently only require businesses that are located within 20 miles of a suitable recycling facility and produce more than two tons of food waste per week to recycle, but expect full compliance by 2020. New York City is also implementing a food waste ban as a result of the success of its recently completed Food Waste Challenge, a six-month trial in which businesses voluntarily participated by donating unused food as well as diverting their scraps to a local treatment plant. The City noted that a key part of the initiative was food donation, as more than 25% of food waste diversion was a result of donations to local food banks. And businesses are supportive. Melissa Autilio Fleischut, president and CEO of the New York State Restaurant Association, commended the program and supported the litigation. “The Food Waste Challenge proves that sending less to landfills is good for both business and the planet,” Fleischut said in a press release. “The New York State Restaurant Association looks forward to working with the city to advance this initiative in a responsible way that works for everyone.”

On the other side of the country, waste-powered cars are swiftly becoming a reality. Hyundai, who has been working with the University of California, plans to begin leasing a fuel-cell version of its Tucson crossover that can travel about 480 kilometers on a tank of hydrogen, which is produced from AD and has zero emissions. The eco-friendly Tucson, which will only be available to California residents, has low lease rates which include free fuel from nearly a dozen hydrogen pumps around the state. Toyota, Honda, Mercedes-Benz and GM are starting to sell hydrogen cars in California as well.

A recently opened filling station in California that utilizes methane from landfill sources
A recently opened filling station in California that utilizes methane from landfill sources

California has long been a pioneer in green technologies. However, Massachusetts is the first state in the nation to actually implement a comprehensive ban on organic waste. While utilizing waste for energy has largely been voluntary and thus slow-moving, this legal mandate will force large-scale organic waste processing facilities into production, either through retrofitting of existing facilities or new construction. And these new processing centers will produce large amounts of biogas. So will the east coast finally start seeing the alternative fuel filling stations and vehicles that are currently reserved only for the west coast? Let’s hope so. If we could combine east coast legal mandates with west coast alternative fuel technology, the nation could see zero emissions vehicles running on discarded organic scraps and sewerage. Keep excess garbage from our landfills while powering pollutant-free vehicles? Now that’s a win-win.

Sustainability of the Sagamore Lens Aquifer Water Resources

sagamore lens labeledLocated on Cape Cod in Massachusetts, the Sagamore Lens is the largest of six groundwater lenses included in the Cape Cod Sole Source Aquifer, and is the public drinking water supply for the towns of Barnstable, Bourne, Falmouth, Mashpee, Sandwich, Yarmouth, and the Massachusetts Military Reserve (MMR). It provides water for extensive agricultural operations including 236 square miles of cranberry bogs, croplands, nurseries, pastures, and orchards. The Sagamore Lens is mapped as a Priority Habitat by the Natural Heritage and Endangered Species Program (NHESP) of the Massachusetts Division of Fisheries and Wildlife, and it provides the water for 153 vernal pools, 180 fresh water ponds, 20 streams and rivers, and 250 miles of coastal shoreline. It also supports a vibrant seasonal tourist population that brings millions of dollars into the Commonwealth. Unfortunately, the Sagamore Lens is experiencing increases in demand and contamination that need to be addressed.

Cape Cod was formed during the last continental deglaciation that occurred between 15,000 and 20,000 years ago, and the glacial deposits tend to contain medium to coarse sand with finer sands at depth. These immensely permeable surface sands make for a very high yielding groundwater system – and also make the Cape Cod Aquifer extremely susceptible to contamination. Public and private wastewater systems, the MMR, and emerging contaminants such as pharmaceuticals and personal care products have all contributed to the recent increased degradation of the Sagamore Lens. Fortunately, Cape Cod government and residents are acutely in tune with their natural resources and have taken steps to ensure the future health of the Cape’s Sole Source Aquifer.

wellhead protectionOver 30 years ago, policy makers and water planners worked vigorously to implement mechanisms to protect Cape Cod’s drinking water supply. One key implementation was the adoption of Wellhead Protection Areas to protect the lands that recharge wells. In addition, residents enthusiastically approved municipal acquisition of land for protection of wellhead areas, and cleanup of the significant MMR contamination began around this time.

Today, Tata & Howard is working with the Upper Cape Regional Water Supply Cooperative on an assessment of the sustainability of the Sagamore Lens. Sustainability requires that the aquifer not be completely used up or destroyed, and that it is protected and kept clean and plentiful for future generations. Unfortunately, the Cape Cod Aquifer has been recently compromised by contaminants of emerging concern (CECs), such as personal care products and pharmaceuticals, which have entered the aquifer through wastewater discharge. Tata & Howard’s study addresses the sustainability of the aquifer through 2030, taking into account different scenarios including drought conditions, wastewater injection, and increased demand.

beachThe study proposes utilizing a regional approach to manage withdrawals, construct adequate water supplies, monitor areas at risk as withdrawals increase, and to incorporate a Drought Management Plan. In addition, the study identifies preferred water supply areas as well as sources and areas at risk, and it proposes a management plan for wastewater disposal and MMR plumes, again using a regional approach.

For decades, Cape Cod government and residents have been progressive in their efforts to protect the area’s drinking water supply, and have taken steps to ensure that future generations are able to enjoy and inhabit this naturally beautiful and ecologically rich area of the country. Through careful research, planning, and cooperative implementation, Cape Cod will remain a healthy seaside mecca for years to come.

Groundwater Awareness and Protection

An Introduction to Groundwater

Groundwater is an abundant and renewable natural resource comprised of the water that soaks into the earth from precipitation. This water moves downward to seep into cracks, crevices, and other openings in rock beds and sand. Groundwater makes up 95% of the world\’s freshwater, with surface water (lakes, rivers, and streams) making up only three percent of all freshwater. To put it into perspective, hydrologists estimate there are currently over 33,000 trillion gallons of groundwater in reserve in the U.S. – which is 20 to 30 times greater than the total amount of water in all of the lakes, streams, and rivers of the U.S.

Why It’s Important

hydrologic cycleGroundwater is an integral part of the hydrologic cycle, which includes all the water of the Earth including the atmosphere, oceans, surface water, and groundwater. The system is cyclical in that water repeatedly moves through all of these elements. In addition, the United States Geological Survey (USGS) estimates that 25% of all U.S. rainfall becomes groundwater, and that 30% of U.S. stream flow originates from groundwater.

The U.S. uses about 80 billion gallons of fresh groundwater every day for public and private drinking water, irrigation, livestock, manufacturing, mining, and thermoelectric power. Over 40% of the nation’s population depends on groundwater for their drinking water supply, with private household wells comprising the largest percentage of all wells in the nation. Over 13 million households depend on private well water.

The Ogallala Aquifer

The largest use of groundwater in the U.S. is irrigation. Over 50 billion gallons of groundwater are used per day for agricultural purposes, up from just over 2 billion gallons per day in 1900. The nation’s largest aquifer is the Ogallala, which runs beneath 250,000 square miles stretching from Texas to South Dakota, and 90% of the water pumped from the Ogallala is used for agricultural irrigation. This massive and plentiful aquifer accounts for one-third of all U.S. irrigated agriculture, and creates about $20 billion in food and fiber annually. If the waters of the Ogallala were spread across the surface of the U.S., all 50 states would be covered with 1.5 feet of water. Yet, even though groundwater is plentiful and renewable, it still needs to be respected. Scientists estimate that if the Ogallala were fully withdrawn, it would take a whopping 6,000 years to refill it naturally. So we all need to take steps to conserve the groundwater – indeed, all water – that we have.

Best Conservation Practices

In the Home

  • Turn the faucet off when the water isn’t being used, such as while brushing your teeth or doing dishes.
  • Don’t pour fresh, unused water down the drain; use it to water plants or to fill a humidifier.
  • Install aerators with flow restrictors on household faucets.
  • When upgrading, choose water- and energy-efficient appliances, such as low-flow toilets and front-load washing machines.
  • Always repair a dripping faucet or leaking toilet; one wasted drop per second adds up to 2,700 gallons per year!
  • Only run a fully loaded dishwasher or washing machine, or set the water level to match the load size.
In an effort to save water, some golf courses, such as this one in Syracuse, NY, are allowing their signature lush green lawns to go brown. Dennis Nett/The Post-Standard/Landov
In an effort to save water, some golf courses, such as this one in Syracuse, NY, are allowing their signature lush green lawns to go brown.
Dennis Nett/The Post-Standard/Landov

In the Yard

  • Raise the mower blade to the highest level to allow your lawn to retain its moisture and to strengthen the root system.
  • Plant native, drought-resistant grasses, shrubs, and trees.
  • Don’t overwater your lawn. Heavy rain eliminates the need to water for up to two weeks, and a bright green lawn is truly overrated. As they say in California, where the drought has reached a critical state, “Brown is the New Green.” A lawn that isn’t perfectly and uniformly dark green indicates a future-minded, caring, and responsible resident.

Groundwater is clearly an extremely important natural resource, and one that deserves our care. Stay tuned later this week as we showcase a Cape Cod aquifer, its uses, safety, sustainability, and protection.

For more information on groundwater, visit https://water.epa.gov/type/groundwater/index.cfm.

For fun and educational kids’ activities, please visit https://water.epa.gov/learn/kids/drinkingwater/index.cfm

Environmental Remediation is Going Green

HW green remediation sprout and soilTata & Howard’s Hazardous Waste Group recently participated in the LSP Association’s Technical Practices Committee meeting which focused on MassDEP’s Green Remediation initiative. MassDEP is looking for involvement from the LSP community in drafting language for its updated guidelines that it hopes to roll out in May along with the new changes to the Massachusetts Contingency Plan (MCP). According to Tom Potter, Clean Energy Development Coordinator from the MassDEP Bureau of Waste Site Cleanup (BWSC) Clean Energy Results Program (CERP), the ultimate goal is to make “greener remediation” a standard practice for all aspects of cleanup work under the MCP. BWSC recognizes that the LSP community plays a key role in the promotion and application of Green Remediation, which is why their input is being sought. The next MassDEP BWSC Green Remediation Workgroup meeting is scheduled for March 11 from 10am-12noon at MassDEP’s Boston Headquarters, and Tata & Howard will be in attendance.

For more information, please visit MassDEP’s website at https://1.usa.gov/1ftS3gn or contact Joel Loitherstein, P.E.