Hurricanes and Water Quality

The United States is currently in the midst of hurricane season, which runs from June 1 – November 30. With the threat of hurricanes, such as Hurricane Matthew, come concerns over flooding, property damage, and power outages. In addition, falling trees and debris, broken but live electrical wires, and areas of flooding pose a major threat to human safety. However, there is another significant but often overlooked threat to human health that frequently occurs during hurricanes: water quality degradation.

Hurricane Sandy devastated New Jersey and caused serious water quality issues
Hurricane Sandy devastated New Jersey and caused serious water quality issues

Hurricanes typically bring with them massive amounts of precipitation – far more than the earth can handle. These surges create giant runoff situations, where pollution, contaminants, trash, and chemicals from the ground are pushed into the local water supply. To make matters worse, water treatment plants are often not able to handle the sudden, significant increase in contaminants, and also may not be working at full capacity due to power outages. This flooding also affects water mains and household lines, sometimes causing the water to bypass water treatment altogether.

But that’s not all. The pounding rain and storm surges brought by hurricanes can also overwhelm sewer systems, causing sewage overflows. The massive flooding of Hurricane Sandy in 2012 overwhelmed the region’s wastewater treatment plants, causing 11 billion gallons of largely untreated sewage to flow into waterways and city streets, mostly in New York City and New Jersey. In addition, the pounding surge caused significant damage to treatment plants, further complicating the issue, and contaminating water supplies.

Lastly, overwhelming amounts of rain and surge as seen with hurricanes can cause excessive amounts of dissolved organic matter (DOM) — soluble organic materials composed of the remains of organisms such as plants and animals and their waste products — to enter waterways. DOM causes a plethora of problems in drinking water: it easily binds with metal pollutants and carries them to reservoirs and lakes, it blocks pathogen-reducing ultraviolet rays, and it also enhances the formation of disinfection byproducts, which are carcinogenic.

T&H employee-owners show their preference for drinking municipal tap water over bottled water
T&H employee-owners show their strong preference for drinking municipal tap water over bottled water

Hurricanes clearly have the ability to not only damage personal property and threaten human safety, but also wreak havoc on our nation’s water supply. The combination of increased contamination, decreased treatment, overflowing sewer systems, and excessive DOM in the water has the potential to cause serious water quality issues. Therefore, during hurricane events, it is always smart to be prepared. Prior to the storm, stock up on bottled water. While municipal water should always be the drink of choice in normal day-to-day living since bottled water has its own set of problems, the safe choice when water quality issues arise as a result of a hurricane is bottled water. After the storm, check on the status of your area’s water quality. Until the authorities give your local municipal water the all clear, stick to bottled water for drinking.

For up-to-the-minute updates on Hurricane Matthew, please visit www.weather.com. And stay safe!

The Water-Energy Nexus: A Vicious Cycle

Water and energy are the two most fundamental ingredients of modern civilization. The water-energy nexus is the relationship between how much water is evaporated to generate and transmit energy, and how much energy it takes to collect, clean, move, store, and dispose of water. Without water, people die. Without energy, we cannot grow food, run computers, or power homes, schools, or offices. As the world’s population grows in number and affluence, the demands for both resources are increasing faster than ever.

The Water-Energy Connection

Energy production is the second largest consumer of water, the first being agriculture. Electric power plants that are fueled by oil, coal, natural gas, or nuclear power require exorbitant amounts of water to cool them, and hydropower plants require water to create energy. Likewise, a significant amount of energy is used in the pumping, treatment, and distribution of water, as well as in the collection, treatment, and disposal of wastewater. In addition, the extraction of fossil fuels used for heating and cooling homes also requires vast amounts of water. Clearly, the relationship between energy and water is inexorably intertwined.

nuclear_cooling_towers
Byron Nuclear Generating Station, located near the small city of Byron, Illinois, has been subject to some controversy with respect to a lawsuit in 1981 with concerns over tritium contamination in groundwater. Tritium contamination at Byron and other Illinois nuclear power plants led the state of Illinois to pass legislation requiring plants to report such contamination to the state within 24 hours.

As the population and affluence of the nation continues to increase, so does the demand for both water and energy. Also, climate change has been responsible for increasingly frequent water shortages, requiring communities to find water elsewhere – which requires even more energy. Pumping water from distant areas or glacial icecaps, desalinating ocean water, and highly treating wastewater to potable standards all require exorbitant amounts of energy. Previously, these methods for obtaining potable water were ignored due to their high energy usage. But as water shortages and drought continue to plague the nation, even affecting the historically wet northeast part of the country, more creative ways of meeting the nation’s demand for water must be innovated and implemented.

Likewise, fossil fuels such as oil and gas are being withdrawn at an unsustainable rate, and supplies are dwindling. As these inexpensive energy sources are depleted, our dependence on alternate, more water-intensive sources of energy increases. This endless cycle of water-energy usage has the potential to spiral out of control, and the only way to make a real and lasting change is for policy makers, businesses, and communities to join forces in the planning, management, and conservation of resources and in the innovation of sustainable solutions.

Planning and Management

Many U.S. aquifers span several states
Many U.S. aquifers span several states; map courtesy of U.S. Geological Survey

One of the key factors to a sustainable future is communication. In the United States, there is little overlap in governmental agencies when it comes to water and energy. The Department of Energy has been an entity since 1977, and yet our nation still does not have an agency dedicated solely to water planning. While the EPA oversees water quality and the U.S. Geological Survey collects and interprets data related to supply, there is no single federal agency that ensures the effective use of water. In fact, much of the onus of water management lies not with the federal government, but with state agencies and municipalities. This can prove problematic when aquifers or watersheds span multiple cities and town, or even states. A logical approach to water management would be a federal agency that oversees all aspects of water management, from quality to supply to usage. In this way, federal energy and water agencies could collaborate to help forge a sustainable future. For example, when a new power plant is proposed, discussions should take place on not only the siting and permitting of the new facility, but also the effect on air and water quality, as well as water usage and potential for scarcity. In this way, more focused attention on the usage and effects of both energy and water will lead to more holistic — and sustainable — installations.

Value and Conservation

One of the greatest concerns of the modern day American is the risk of running out of inexpensive oil. The cost of oil pushed gasoline prices to $4.48 per gallon in 2008, and was partially responsible for the great recession of 2009. Realizing that the end of cheap oil could spell economic disaster, many people have begun to look at alternate heating sources for their homes, and alternate means to power their vehicles, such as biofuels or electricity. But how much more disastrous would it be to run out of cheap water? Peak oil would admittedly cause economic difficulty as well as some amount of human hardship, but peak water has the potential to cause far direr consequences. Millions of people globally already die from lack of access to an improved water source, and peak water would increase that number exponentially.

Drip irrigation is far more water efficient than spraying
Drip irrigation is far more water efficient than spraying

It is critical that the value of water be realized if we are to start making real changes. Gasoline prices are currently around $2.20 per gallon, while a gallon of municipal water costs less than one penny. And yet, we can live without gasoline – we cannot live without water. As society begins to understand that procuring, treating, and distributing water is an expensive task and that supplies are limited, we can innovate technologies that reduce the amount of freshwater that we use. For example, in the western part of the country, the Ogallala aquifer is being depleted at a rate far higher than it is being replenished, and irrigation accounts for 94% of the groundwater withdrawals in that area. Switching to a more water efficient irrigation process such as drip irrigation rather than spray would save a significant amount of water. Also, utilizing reclaimed water for crop irrigation, cooling power plants, and industry would greatly reduce our groundwater withdrawals. Even at the residential level, conservation is important. Community outreach programs and educational materials can be used to teach residents how they can save water in their homes and businesses. Simple, low-cost initiatives such as mowing grass to a higher level, utilizing rain barrels, and planting native trees and plants can have a huge impact when implemented on a large scale.

And let’s not forget about energy. Energy conservation is directly linked to water conservation, and it is critical that saving energy happen at both the industrial and residential levels. All businesses should examine their energy efficiency and implement energy-saving initiatives. And businesses that utilize a lot of water, such as hospitals and hotels, should conduct water audits to examine and modify their water usage. Wastewater treatment should include technologies that create energy from waste, such as anaerobic digestion, in order to offset the energy used in treatment processes. Likewise, homeowners should be educated on the importance of saving energy. Utilizing energy efficient lighting, turning the heat down by a degree or two, and unplugging appliances, computers, and chargers that are not in use are just a few of the ways that the individual American can save energy. In addition, heating residential water uses a significant amount of energy, while solar water heating is a simple technology that is as inexpensive as it is effective and efficient. Unfortunately, it has not received any type of federal backing or media attention, and remains relatively unknown. Both education and policy are critical to the widespread implementation of energy saving initiatives.

In Conclusion

Energy and water are both precious resources that are critical to our health, our economy, and our way of life — and they are inextricably linked. Of the utmost importance is that we value water. Until water has a realistic price on it, as energy does, it will be seen as a resource that can be used and wasted at free will. Only with accurate pricing can the link between water and energy be made apparent to consumers, and that conserving water conserves energy, and vice versa. Likewise, with true pricing consumers would see that as the price of water increases, so does the price of energy, and that as the price of energy increases, so does the price of water. Feeling the effects in our pockets would increase the appearance of value, act as a strong motivator to more aggressive conservation, and would prompt the innovation and implementation of more efficient, green solutions.

Tata & Howard Hires Steve Landry, P.E. as Vice President

Tata & Howard Hires Steve Landry, P.E. as Vice President

Steve Landry, P.E., Vice President
Steve Landry, P.E., Vice President

Seasoned civil engineering professional brings extensive water and wastewater experience to the firm

Tata & Howard is pleased to announce that Steve J. Landry, P.E. has joined the firm as Vice President. Mr. Landry brings over 36 years of targeted water and wastewater engineering consulting experience to the team and will lead the firm’s wastewater work. He is working out of the company’s corporate office in Marlborough, Massachusetts.

“I am excited for the opportunity to lead Tata & Howard’s highly talented wastewater team,” commented Landry. “The firm is well known in the industry as a leading provider of top notch water and wastewater engineering solutions, but their high level of integrity, innovation, and collaboration is what truly sets the firm apart.”

“As our firm continues to experience unprecedented growth, it is critical that we enhance our team with individuals who are both technically adept as well as highly disciplined,” stated Donald J. Tata, P.E., President of Tata & Howard. “Steve’s technical mastery and profound level of integrity make him a perfect fit for the firm. Bringing him on board will allow us to enhance our current services, increase our client base, and continue to be the industry benchmark for providing innovative, cost-effective water and wastewater engineering solutions.”

In addition to his extensive consulting experience, Mr. Landry has served on the Board of Directors of the National Society of Professional Engineers and as President of the Rhode Island Society of Professional Engineers. He has also served as Chair of New England Water Environment Association’s CSO and Wet Weather Issues Committee. He holds a Bachelor of Science degree in Civil Engineering and a Master of Engineering degree in Water Resources from Clarkson University.

Imagine a Day Without Water 2016

idww2016highdef2idww16_twitter_economyImagine a day without water. Nearly every single thing we do is reliant on water. Right at the start of our day, we would not be able to use the bathroom, take a shower, brush our teeth, or make a cup of coffee. There would be no cleaning dishes, mopping floors, or cooking food. Water is something we use constantly throughout the day without even thinking about it, and has therefore become something we take for granted. For that reason, Imagine a Day Without Water was first introduced in 2015 in order to bring awareness to the value of water.

Think about how frustrating it is when our internet or cell phone service is interrupted. Having no signal or losing WiFi on our laptops can grind work to a halt, as well as bring about headaches and aggravation — but it doesn’t actually affect our health or our lives. And yet, in America we pay approximately $50 per month for internet, $75 per month for our cell phone bill, and a whopping $100 for the luxury of cable television. Ironically, the average monthly water bill is only about $30, and people often bemoan the fact that the cost of water has been increasing in recent years. The reality is that providing safe, clean drinking water and treating our wastewater is extremely complicated – and costly.

idww16_twitter_mainsThink about the way water enters our homes and businesses, and of how our wastewater leaves it. There are literally thousands of pipes underground that we never see, and many of these pipes are approaching the end of their useful life. After all, most of our infrastructure was built around the time of World War II, and is now over 70 years old. In fact, much of the infrastructure in New England is well over 100 years old. These pipes and treatment plants are in desperate need of repair and replacement. In addition, our drinking water is treated to meet increasingly stringent regulations that protect our health. Bacteria, toxins, metals, and other harmful substances are all removed from the water prior to it entering the distribution system, and this treatment is expensive. In the same way, the wastewater that leaves our homes and businesses is highly treated and cleaned before it is returned to the environment, protecting public health from the myriad toxins and diseases found in untreated wastewater.

Failing pipes from our aging infrastructure also account for an astronomical amount of clean, treated drinking water that never reaches the consumer, and is never billed. This “lost” water comes at a staggering cost. To put it into perspective, the cost of this lost water is approximately $2.6 billion annually — which is approximately equivalent to the annual amount that the federal government allots to fund our water infrastructure — and the 1.7 trillion gallons of lost water is about the same amount of water needed to fully supply America’s ten largest cities.

idww16_twitter_droughtAnother challenge faced by utilities today is our growing national population combined with historic drought and climate change. This increased demand in the wake of a dwindling supply is placing extra pressure on our water and wastewater systems, and requires thoughtful, long-term solutions if we are going to be able to meet current and future demands. Add to that the recent focus on our nation’s lead service lines and the fact that they absolutely need to be replaced, and it becomes clear that our water and wastewater systems are in desperate need of attention — and investment.

Imagine a Day Without Water is a national movement that is looking to change the way we look at water, which is currently highly undervalued. It is by far the least expensive of all of our utilities, and yet it is the only one without which we cannot live. Consider that the cost to repair our nation’s water and wastewater infrastructure will require an estimated investment of $4.8 trillion over the next 20 years, and it becomes apparent that the time to invest is now. The key to funding our nation’s water and wastewater systems is education and placing the proper value on water. It is crucial that legislators and ratepayers support utilities in their efforts to upgrade and replace infrastructure, to address the funding gap for these critical projects, and to acknowledge and address the water supply challenges that we currently are facing.

idww16_twitter_modernizeWe have reached the point where we must proactively address and invest in our nation’s water and wastewater infrastructure — before it is too late. Imagine a Day Without Water is a day in which we can all spread the word about the value of water by encouraging friends, family, and colleagues to imagine what their lives would be like without water. With proper planning and smart investment from both consumers and our legislators, living without water is something that will never come to fruition in our nation. Join the movement today by participating in Imagine a Day Without Water. For the many no-cost ways in which you can participate, including signing a petition, joining a Thunderclap, and becoming involved on social media, please visit https://imagineadaywithoutwater.org/participate.

Back to School – Lead in Drinking Water of America’s Schools

Milford Water Company water main installation; design, construction administration, and resident observation by Tata & Howard
Milford Water Company water main installation; design, construction administration, and resident observation by Tata & Howard

By now, everyone has heard of the water crisis that occurred in Flint, Michigan when the City switched the source of its municipal water from the Detroit system to the Flint River in an effort to cut costs. Anti-corrosion chemicals were not added to the water, allowing lead to leach from the City’s aging pipes into the water supply. In the aftermath, hundreds of children suffered lead poisoning, officials were fired, arrests were made, and lawsuits were filed. And while the Flint disaster was arguably terrible and tragic, it has brought much-needed attention to the state of our nation’s infrastructure, and the criticality of maintaining and improving it.

Lead Service Lines in the United States

There are an estimated six million lead pipes remaining in use in the United States, utilized by over 11,000 water systems that serve nearly 22 million Americans, yet there is no federal plan in place to replace these lead service lines. Why? First, it would cost an exorbitant amount of money — roughly $30 billion — to replace every single remaining lead service line, money that utilities simply do not have. With failing infrastructure, dwindling budgets, more stringent regulatory requirements, and increased demand, utilities are doing everything they can simply to maintain service and compliance. To mitigate lead in drinking water, utilities that are unable to dig up all their lead service lines are instead treating water so that it forms a coating on the interior of the pipes. This coating serves as a protective barrier between the water and the lead pipes, preventing lead from leaching into the water supply. This methodology requires extreme vigilance, as water chemistry often changes, which can cause corrosion controls to fail. Fortunately, utilities regularly test their water for lead contamination, and on February 29, 2016, the EPA changed testing regulations to more accurately reflect the amount of lead in drinking water.

Lead in the Drinking Water of Public Schools

child_drinking_water_fountainWhile utilities are working diligently to keep our nation’s water lead-free, public schools have recently come under fire, as schools from cities across the nation — including Boston, Massachusetts; Ithaca, New York; Portland, Oregon; and Tacoma, Washington — have found lead in their drinking water above the EPA’s action level of 15 parts per billion. Surprisingly, this contamination is the result of a legal loophole that many states are looking to close: schools are mandated by the EPA to be connected to a water supply that is regularly tested for lead and other contaminants; however, these utilities are not typically required to actually test the water inside the schools themselves. Considering that the average age of a school in the United States is 44 years old, it should come as no surprise that there are elevated levels of lead in the drinking water of public schools. After all, lead pipes were legal until about 30 years ago, and faucets and fixtures were allowed to contain up to 8% lead until 2014.

Lead poisoning is particularly detrimental to school-aged children, and public outcry — largely as a result of Flint’s crisis — has spurred many schools to voluntarily test their water. The findings have been shocking to parents and educators, as school across the nation, from Maine to Washington state, are reporting lead levels above the EPA’s action level. Every day, another news story crops up with a report on elevated lead in a county’s school system, and it becomes apparent that our nation has a serious problem on its hands. Just as with water utilities, the ideal solution would be to replace all the lead pipes and fixtures in our nation’s schools, but again, funding for large-scale replacement just isn’t available. Instead, many schools have turned to lead filters, which work extremely well when maintained regularly.

Looking Ahead

water_test_leadMany states have introduced legislation this year that would require public schools to regularly test their water. Bills on the table in Michigan, New Jersey, North Carolina, and Rhode Island would require regular testing, as would a New York bill that takes it one step further by providing funding for said testing. In addition, the New York bill would require schools to notify parents and to provide an alternate supply of safe drinking water to students if elevated lead levels are found. In Massachusetts, all community water systems are required by Massachusetts drinking water regulations to collect lead and copper samples from at least two schools or early education and care program facilities that they serve in each sampling period, when they collect their Lead and Copper Rule (LCR) samples. In addition, in April of 2016, it was announced that $2 million from the Massachusetts Clean Water Trust (MCWT) will fund cooperative efforts to help Massachusetts public schools test for lead and copper in drinking water. The funds, to be used by the Massachusetts Department of Environmental Protection (MassDEP), will provide technical assistance to ensure that public school districts can sample the taps and water fountains in their schools, and to identify any results that show lead and copper contamination over the action level. On a federal level, legislation has been introduced to Congress that would requires states to assist schools with testing for lead; however, it does not provide funding.

In Conclusion

As long as lead service lines and plumbing remain in use in our nation, there remains a risk of lead contamination of our drinking water. Utilities, states, and schools are doing what they can to limit this risk as much as possible, but the only fail safe solution is full replacement of all lead service lines and fixtures — a massive undertaking that will require significant capital investment that is not currently available. Therefore, it is imperative that utilities and schools continue to remain vigilant about testing for and mitigating lead in drinking water, even after the public outcry from Flint has faded.

World Water Week 2016 – Water for Sustainable Growth

SIWI-WWW-Logo_2015_267x100cWorld Water Week in Stockholm is an annual event that focuses on global water issues. One of the key aspects of World Water Week is the coming together of industry experts in an effort to brainstorm and develop solutions to the world’s most pressing water-related issues.

World Water Week is organized by the Stockholm International Water Institute (SIWI), whose vision is a water wise world where the unique value of water is recognized and where water is shared and allocated sustainably, equitably, and efficiently to meet everyone’s basic needs. This year’s theme is Water for Sustainable Growth, and also marks the 20th jubilee of the Stockholm Junior Water Prize. In 2015, over 3,300 individuals and close to 300 organizations from 130 countries participated in World Water Week.

Importance of Water for Sustainable Growth

As the global population continues to increase exponentially, it has become absolutely critical that natural resources be utilized sustainably — and water is arguably the world’s most precious resource. While water is a necessary part of every aspect of life, water availability will be of particular import in five key areas, expanded below.

Agriculture

irrigation_cropsAgriculture is not only critical to nourishing the global population, it is also far and away the most aggressive consumer of water. In fact, 70% of water withdrawals worldwide are for agriculture. Add to this the fact that by 2050 global agriculture will need to produce 60% more food in order to feed the burgeoning population, and it becomes clear that finding ways to farm sustainably is not only prudent, but necessary. The most sustainable form of agriculture comes in the form of rain fed crops. However, only about half of agriculture that has the potential to be rain fed is currently doing so. The rest is relying on irrigation and water withdrawals. Therefore, a key goal for the future is to convert these irrigated crops into ones that are watered naturally, with rainfall.

Industry

The second largest consumers of water are industry and energy, which combined account for 20% of the global water demand. Most of this demand is, of course, from developed countries, since underdeveloped countries typically are dominated by agriculture. Therefore, there exists a serious imbalance in industrial water usage and concern over the future as industrialization spreads as these underdeveloped nations expand. Therefore, water experts are working together to find ways in which all nations can benefit from industrialization while avoiding unsustainable impacts on water demand as well as other natural resources.

Domestic

CityWaterDomestic usage only accounts for 10% of total water demand, but its impacts are arguably the most important. Lack of improved water and sanitation is one of the largest contributors to poverty, illness, and lack of education worldwide. Even with the incredible strides made in the United Nation’s goal to provide improved water and sanitation to all people, an estimated 748 million people still lack access to an improved source of water and 2.5 billion still lack access to improved sanitation. One of the key goals of water for sustainable growth is finding ways in which to unequivocally ensure safe, clean water and hygienic, private sanitation to all inhabitants on the planet.

Ecosystems

Adding to the challenge of water for sustainable growth for agriculture, industry, and domestic usage is the fact that climate change and an ever-increasing population have created a significant impact on our environment. Sustainable development has been a buzzword for decades, and yet most efforts have been largely unsuccessful. Rainforests have been stripped, aquifers practically drained, air quality degraded, and soils contaminated. No longer can sustainable development be a catch phrase or theory – the time has come for a proactive, targeted response to the global ecological crisis, including water supply and demand. Fortunately, savvy water and ecological experts from around the globe are currently working hard towards a sustainable future for generations to come.

Cities

slums_waterCurrently, over half of the global population resides in cities, and that number is expected to increase to over two-thirds of the nine billion global inhabitants by 2050. Most of this increase will happen in developed nations, which will tax infrastructure and likely increase areas of impoverished living conditions. Already in the United States are areas, such as Navajo Nation and the Texas Colonias, that are in many ways similar to those in underdeveloped nations in terms of infrastructure and resource availability. And, with the influx of urban residents, those areas of substandard living conditions are likely to increase – and not just in America. In fact, it is predicted that, without proactive planning, global urban populations will almost certainly experience a serious degradation in living conditions, including inadequate water and sanitation facilities. Therefore, the sustainable development of water resources for not only economic and industrial growth, but also for social equality and justice will be key to the sustainable development of urban areas.

In Conclusion

Sustainable development of water resources is paramount for the future health and success of our planet. SIWI’s World Water Week is a way in which experts from around the world are able to meet, discuss, share ideas, and thoughtfully plan for a sustainable future. For more information on World Water Week, including updates, activities, and how you can participate, please visit www.worldwaterweek.org.

 

SaveSave

Tata & Howard Receives ZweigGroup Fast Growth Award for 2016

Tata & Howard Receives ZweigGroup Fast Growth Award for 2016

fast_growth_award

Tata & Howard, Inc. is pleased to announce that it has been awarded a Zweig Group Fast Growth Award for 2016. The award is based on both revenue and firm growth over the previous three-year period.

“We are thrilled to receive a Fast Growth Award from Zweig Group,” said Jenna Rzasa, P.E., Vice President and Manager of Finance of Tata & Howard. “Our record growth over the past few years can be attributed to many factors, including new clients and projects, existing client care, and our highly capable and skilled staff.”

Contributing to its record growth, Tata & Howard acquired Leach Engineering Consultants of St. Johnsbury, Vermont in 2013 and Roald Haestad, Inc. of Waterbury, Connecticut in 2014, and opened its newest satellite office in Austin, Texas in 2015. The firm also nearly doubled its staff.

“We are honored to be recognized as one of the fastest growing, privately owned engineering companies in the nation,” added Karen Gracey, P.E., Vice President and Manager of Business Development. “Our strong team atmosphere combined with our talented and dedicated staff enables Tata & Howard to consistently provide superior service and solutions to our clients, which is why we continue to experience such unprecedented growth.”

Zweig Group, an organization that provides market research reports, seminars and executive education offerings, business conferences, and management consulting services to architecture, engineering, and environmental consulting firms, sponsors the award and will recognize Tata & Howard at its 2016 Zweig Group Hot Firm and A/E Industry Awards Conference. The conference will be held September 22-23 at the Arizona Biltmore.

 

The 10 Largest Reservoirs in the United States

Fort Randall Dam, Lake Francis Case
Fort Randall Dam, Lake Francis Case

10. Lake Francis Case, South Dakota

Lake Francis Case, named after former South Dakota Senator Francis Higbee Case, has a total capacity of 3,800,000 acre-feet, stretches over 100 miles, has a shoreline of 540 miles, an area of 102,000 acres, and a maximum depth of 140 feet. It is impounded by the Fort Randall Dam on the Missouri River in south-central South Dakota and it provides water supply, hydroelectric power, recreation, and an abundant, rich habitat for local wildlife. In fact, Lake Francis Case is home to one of the largest wintering populations of bald and golden eagles.

Authorized by the Flood Control Act of 1944 and built next to Old Fort Randall, a military fort built in 1856, Fort Randall Dam is an earthen embankment dam that underwent construction by the Army Corps of Engineers in 1946. In 1954, President Dwight D. Eisenhower flipped the switch that started the first power generating unit, and the project was officially completed in 1956 at a cost of about $200 million.

Sabine River Authority State of Louisiana – Observation Area near Toledo Bend Dam
Sabine River Authority State of Louisiana – Observation Area near Toledo Bend Dam

9. Toledo Bend Lake, Louisiana and Texas

With a total area of about 205,000 acres in both Louisiana and Texas and providing water supply, hydroelectric power, and a plethora of recreational uses, Toledo Bend Lake is the largest human-made body of water in the south and the ninth largest in the United States. Impounded by the Toledo Bend Dam, Toledo Bend Reservoir has a storage capacity of 4,477,000 acre-feet, is 15 miles across at its widest point, has an average depth of 60 feet, is 1,264 miles of shoreline, and its two hydroelectric power generators have an estimated annual energy output of 205 million kilowatt-hours.

In 1949 and 1950 respectively, realizing a need to provide for the future, the Texas and Louisiana State Legislatures each formed their own Sabine River Authority in an effort to both conserve and develop the Sabine River Basin. In the 1950s, the two organizations worked together to come up with the idea of Toledo Bend Lake, and feasibility studies indicated that the project would be a success. Land acquisition and construction took place in the 1960s, and the project was completed in 1969. The total cost, including the land, dam and spillway, powerhouse, new roads and bridges, and the clearing of shorelines, was $70 million. Due to cooperation from investor-owned companies Gulf States Utilities Company, Louisiana Power and Light Company, and Central Louisiana Electric Company, the Toledo Bend Reservoir project did not have federal funding in its permanent financing – the only public water conservation and hydroelectric project to boast such a statistic.

Shasta Dam, Lake Shasta
Shasta Dam, Lake Shasta

8. Lake Shasta, California

With a total capacity of 4,552,000 acre-feet, an elevation of 1,067 feet, 365 miles of mostly mountainous shoreline, and a maximum depth of 517 feet, Lake Shasta is California’s largest reservoir and the eighth largest in the United States. Lake Shasta is impounded by the Shasta Dam, a concrete arch gravity dam across the Sacramento River that stands 602 feet tall, making it the eighth tallest dam in the United States. Operated by the Bureau of Reclamation, the reservoir provides water storage, flood control, hydroelectricity, and protection against the intrusion of salt water.

The Shasta Power Plant contains five huge generators capable of producing 710 megawatts, and recent upgrades have increased their efficiency rating to 98%. Originally built to control the waters of the Sacramento, the McCloud, and the Pit Rivers, the reservoir has since become one of the most popular vacation spots in the western United States. Providing thousands of jobs for people still suffering from the Great Depression, construction on the dam began in 1935 and was completed in 1945.

Libby Dam, Lake Koocanusa
Libby Dam, Lake Koocanusa

7. Lake Koocanusa, Montana

Impounded by the Libby Dam on the Kootenay River, Lake Koocanusa has a total capacity of 5,809,000 acre-feet, stretches 90 miles on the northern part of Montana and into British Columbia, Canada, and has a maximum depth of 370 feet. The reservoir provides water supply to both the United States and Canada, as well as hydroelectric power, flood protection, and wildlife habitat.

Operated by the Army Corps of Engineers in the United States, construction of the Libby Dam was a joint cooperative venture between the U.S. and Canada that began in 1966 and was completed in 1972. The Libby Dam is a concrete gravity dam that stands 422 feet tall and has a gated overflow spillway. The dam’s powerhouse contains five turbines and can generate up to 600 megawatts of power.

Grand Coulee Dam, Lake Franklin
Grand Coulee Dam, Lake Franklin

6. Franklin D. Roosevelt Reservoir (Lake Franklin), Washington

With a total capacity of 9,562,000 acre-feet, Lake Franklin is the largest reservoir and lake in Washington state and the sixth largest in the nation. Impounded by the Grand Coulee Dam on the Columbia River, Lake Franklin covers 125 square miles, has over 600 miles of shoreline, and stretches about 150 miles from the Canadian border to the Grand Coulee Dam. The reservoir provides water supply, hydroelectric power, wildlife habitat, and recreation.

Constructed between 1933 and 1941 and operated by the Bureau of Reclamation, the Grand Coulee dam is a concrete gravity dam that stands 550 feet tall, stretches almost one-mile long, and has a drum gate spillway. Originally constructed with two power plants, a third power station was added in 1974, and it is now the largest electric power-producing facility in the United States.

Fort Peck Dam, Fort Peck Lake
Fort Peck Dam, Fort Peck Lake

5. Fort Peck Lake, Montana

Boasting a 1,520-mile long shoreline that is longer than the entire coastline of California, Fort Peck Lake stretches 134 miles through central Montana, has a total capacity of 15,400,000 acre-feet, covers an area of approximately 245,000 acres, and has a maximum depth of 220 feet. Impounded by the Fort Peck Dam on the Missouri River, Fort Peck Lake provides water quality management, flood control, and hydroelectric power. It also lies within the Charles M. Russell National Wildlife Refuge and is home to a plethora of fish and game.

Operated by the Army Corps of Engineers, Fort Peck Dam was a major project of the Public Works Administration as part of the New Deal. The dam was constructed from 1933 to 1943 and the project employed tens of thousands of people. Fort Peck Dam is an art deco hydraulic earthfill dam that stands 250 feet tall, has a controlled overflow spillway with eight bulkhead gates, and has five generating units with a capacity of 185 megawatts. The dam was added to the National Register of Historic places in 1986 and is the largest hydraulically filled dam in the United States. It is also the second largest dam in the world by structure volume, second only to the Tarbela Dam in Pakistan.

Garrison Dam, Lake Sakakawea
Garrison Dam, Lake Sakakawea

4. Lake Sakakawea, North Dakota

Impounded by the Garrison Dam on the Missouri River, Lake Sakakawea has a surface area of 307,000 acres, maximum depth of 180 feet, a shoreline of 1,320 miles, and a total capacity of 18,500,000 acre-feet. It is the largest human-made lake in North Dakota and the fourth largest in the United States. Originally constructed for flood control, navigation, irrigation, and hydroelectric power, the project was constructed by the Army Corps of Engineers between 1947 and 1953 and cost approximately $300 million.

Garrison Dam is an earthfill embankment dam that stretches almost two miles in length, stands 210 feet tall, generates 583 megawatts of power, and has a service spillway with 28 controlled gates. It is the fifth largest earthen dam in the world.

Oahe Dam at night, Lake Oahe; photo courtesy of Ashely Lieberman Hughes
Oahe Dam at night, Lake Oahe; photo courtesy of Ashely Lieberman Hughes

3. Lake Oahe, South Dakota

With a surface area of 374,000 acres and a total capacity of 19,300,000 acre-feet, Lake Oahe stretches for 231 miles through South Dakota and is the third largest reservoir in the United States. It provides flood control, irrigation, hydroelectric power, recreation, wildlife habitat, and navigation benefits,

Authorized by the Flood Control Act of 1944, the Oahe Dam underwent construction in 1948 by the Army Corps of Engineers. In 1952, the world’s first rock tunnel boring machine (TBM) was invented specifically for the Oahe Dam project. The significance of James S. Robbins’ TBM invention cannot be overlooked, as it marked the beginning of machines replacing humans for tunneling. The earthfill dam, which is 245 feet tall and 9,360 feet long, impounds the Missouri River, has eight spillways, and is the fifth largest dam in the world by structure volume. The power station is capable of generating 768 megawatts of power and provides electricity for most of the north-central United States. The project, which was completed in 1962 at a total cost of approximately $340 million, was officially dedicated by President John F. Kennedy.

Glen Canyon Dam, Lake Powell
Glen Canyon Dam, Lake Powell

2. Lake Powell, Arizona

A breathtakingly beautiful reservoir that attracts over two million vacationers per year, Lake Powell is the second largest reservoir in the United States and is impounded by the Glen Canyon Dam on the Colorado River. Lake Powell — which has a capacity of 27,000,000 acre-feet, a surface area of over 161,000 acres, and a maximum depth of 532 feet — provides water storage for the Upper Basin states of the Colorado River Compact, including Colorado, Utah, Wyoming, and New Mexico.

Constructed at a cost of $155 million from 1956 to 1966 by the Bureau of Reclamation, the Glen Canyon Dam is a concrete arch gravity dam that stands 710 feet tall, contains over five million cubic yards of concrete, provides 1296 megawatts of power, and has twin concrete tunnel spillways controlled by double radial gates. The project was dedicated by Lady Bird Johnson on September 22, 1966.

Hoover Dam, Lake Mead
Hoover Dam, Lake Mead

1. Lake Mead, Nevada

Named after Bureau of Reclamation Commissioner Elwood Mead, Lake Mead is the largest reservoir in the United States, stretching 112 miles long with a total capacity of 28,255,000 acre-feet, a shoreline of 759 miles, and a maximum depth of 532 feet. It provides water supply, hydroelectric power, recreation, and wildlife habitat. Because of prolonged drought and increased demand, Lake Mead — which provides water to over 20 million people in the states of Arizona, Nevada, and California — has not actually reached its full capacity since 1983. In fact, Lake Sakakawea, number four on our list, currently lays claim to the title of largest reservoir by total area and water volume in reserve.

Constructed between 1931 and 1936 by the Bureau of Reclamation at a cost of $49 million, the Hoover Dam impounds the Colorado River to create Lake Mead. As impressive as the reservoir it creates, the Hoover Dam is a concrete gravity arch dam that soars a whopping 726 feet tall, has two controlled drum-gate spillways, and generates an impressive 2,080 megawatts of power. The construction provided jobs for thousands and thousands of workers during the Great Depression and was named, if somewhat controversially, after President Herbert Hoover. It is the second tallest dam in the United States, second only to the Oroville Dam in California.

Why Water and Wastewater Utilities Must Practice Operational Efficiency

Efficiency-300x209Water and wastewater utilities across the country face common challenges. These include rising costs, aging infrastructure, increasingly stringent regulatory requirements, population changes, and a rapidly changing workforce. While many utilities find themselves turning from one urgent priority to the next, others have implemented effective operational efficiency initiatives that have helped them enhance the stewardship of their infrastructure, improve performance in many critical areas, and respond to current and future demands. Improved efficiency is not just beneficial to a utility’s bottom line – it benefits everyone in a community.

Infrastructure Stability

Utilities who implement operational efficiency understand the condition of and costs associated with critical infrastructure assets. This allows them to maintain and enhance the condition of their infrastructure over the long-term at the lowest possible life-cycle cost consistent with customer, community, anticipated growth, and system reliability goals. Efficient utility management assures infrastructure repair, rehabilitation, and replacement projects are coordinated in order to minimize disruptions in service or other negative consequences.

Enhanced Employee Leadership Development

teamwork-300x181A common problem facing many utilities today is a retiring work force. By implementing operational efficiency now, utilities can recruit and retain a workforce that is competent, adaptive, and correctly trained to take on leadership roles of their own. Through communication and effective training, utility owners and operators can create an organization focused on continual learning and improvement. This ensures employee knowledge is retained and improved upon. Over time, senior knowledge and best practices will be passed along to promote a well-coordinated senior leadership team who understands their system and the needs of its customers.

When employees or operators of water and wastewater systems are knowledgeable enough to solve problems themselves, it allows managers to focus more on the entire utility versus consistently fixing small problems. Managers are then free to focus on internal operations, better management practices, improving water and effluent quality, and other areas of priority.

Managing Reliable Data through Operational Efficiency

Coupled with excellent communication throughout utility staff, data collection is an area of operational efficiency that helps utilities meet demand and plan for the future. With the collection of accurate, reliable data and the tools to analyze the information, utilities can prioritize actions and capitalize on their efforts. This allows them to understand the demands of their service areas and ensure sufficient supply is available. By more efficiently identifying contributors to non-revenue water, such as system leaks, aging assets, and unauthorized usage, utilities can reduce operational expenses and uncover new revenue streams. They can also provide their customers with access to that same set of information, making it possible for them to understand and manage their consumption. This delivers benefits to the entire organization, including billing, customer service, operations, engineering, and distribution, and empowers utilities to address conservation and revenue opportunities.

Reduced Vulnerability to Climate Changes

solution-chalkboard-concept-300x200Some practices that utilities are implementing greatly help to improve resiliency and reduce vulnerability to an ever changing climate. Internal practices and initiatives such as energy conservation, solar energy, and utilizing heat transformed into energy from sewage and digestion have helped utilities rely less on the grid and more on their own operations. This is especially beneficial considering the ever-increasing price of energy. Reducing energy use significantly lowers operational costs for utilities – freeing up dollars for future initiatives or infrastructure improvements. Utilities who practice operational efficiency understand that making internal practices more efficient results in the entire distribution system becoming more efficient.

All Around Flexibility for Utilities

Practicing operational efficiency can greatly improve all around flexibility for water and wastewater systems. Knowing your distribution system and operating it to your specific community’s needs is a huge advantage in dealing with costly dilemmas that occur with infrastructure. In places that see seasonal spikes in water usage, operational efficiency allows a utility to adjust and operate more effectively during peak times as well as during the “off-season.” Practicing operational efficiency also allows a utility to better deal with issues in their distribution system without disrupting service to customers.

In Conclusion

To meet continually increasing challenges, utilities must become more efficient in the way they manage their resources, address demands on their infrastructure, and monitor data throughout their systems. The implementation of improved operational efficiency helps utilities ensure ongoing, timely, cost-effective, reliable, and sustainable performance improvements in all facets of its operations.