The 10 Coolest Bridges in New England

The Bridge of Flowers, Shelburne Falls, MA

Bridge of Flowers ShelburneBuilt in 1908 by the Shelburne Falls and Colrain Street Railway to transport people and freight to the mills in Colrain, the bridge was already out of use by 1927 when the railway company went bankrupt. However, even though it was no longer being utilized for any type of traffic, the bridge could not be demolished because it carried a water main between the towns of Buckland and Shelburne Falls. After seeing the bridge blanketed in weeds, a woman named Antoinette Burnham was inspired to turn the bridge into a lovely garden, and the community fully supported her whimsical idea. The Shelburne Woman’s Club and other women’s clubs in the town financed the project.

In 1981, the Women’s Club spearheaded a fundraising campaign for bridge repairs and the Club, along with the Towns of Buckland and Shelburne, bridge owner Shelburne Falls Fire District, the Shelburne Falls Area Business Association, and the Franklin County Planning Department, worked together to hire a planner for the project. The engineering study estimated the cost of repairs and restoration to be $580,000, which was raised through fundraising, a Massachusetts Small Cities Community Development Block Grant of $290,000, and appropriation of $100,000 from the Shelburne Falls Fire District. During restoration in 1983, the water main was replaced, and every single plant, tree, and shrub was carefully removed and tended by private citizens.

Today, care of the living bridge is managed by a head gardener, her assistant, and countless local volunteers. The blooming bridge boasts over 500 varieties of annuals and perennials and is open to the public from early spring through late fall.

East Haddam Swing Bridge, CT

East_Haddam_Swing_BridgeConnecting the towns of Haddam and East Haddam, Connecticut via Route 82 over the Connecticut River, the East Haddam Swing Bridge is believed to be the longest swing bridge of its kind in the world. The 881-foot long steel-truss swing, or opening, bridge is constructed of two separate spans that swing open on every half and full hour to allow recreational water vehicles to pass. Officially opened on June 14, 1903, the East Haddam Swing Bridge celebrated its centennial celebration on June 15, 2013 with an antique car parade.

Claiborne Pell Bridge, Newport, RI

Pell bridge newport riConstructed to connect the popular summer tourist town of Newport to Jamestown, RI, the Claiborne Pell Bridge is the largest suspension bridge in New England. Its main span is almost 500 meters, total length is about 3,500 meters, and its main towers stretch over the Narragansett Bay at 120 meters. Originally named the Newport Bridge, the bridge was renamed the Claiborne Pell Bridge in 1992 in honor of United States Senator Claiborne de Borda Pell, who was the longest serving senator from Rhode Island and the force behind the 1973 Pell Grants, which provide financial aid to college students.

Bailey Island Bridge, Harpswell, ME

Bailey_Island_Bridge,_Harpswell,_ME_-_IMG_7897Built in 1927, this unique bridge connecting Bailey Island and Orr’s Island in Maine is constructed of granite blocks stacked atop one another with no mortar — the bridge is entirely held together by gravity. Bailey Island Bridge is, in fact, the only cribstone bridge in the world. Its unique construction lends the bridge incredible strength, allowing it to withstand the fiercest storms with minimal maintenance throughout the years, while still allowing strong currents and tides to easily flow through it. Added to the National Register of Historic Places in 1975, Bailey Island Bridge is a must visit for any local bridge enthusiasts.

Gold Brook Bridge (Emily’s Bridge), Stowe, VT

Emilys Bridge Gold Brook VermontWhile there are many quaint, picturesque covered bridges throughout New England, Gold Brook Bridge is unique among them. Constructed in 1844, the 50-foot long single-lane structure, dark and weathered, is purported to be the home of a less-than-friendly ghost named Emily. There are two tales about Emily, and neither has been confirmed. In one version, the beautiful young woman and her lover made plans to meet at the bridge and elope. When the young man never showed, Emily was so overcome with grief that she tied a length of rope to the bridge rafters and hanged herself. In the other version, Emily and her fiancé planned to marry in the town church. Donning a red dress, Emily waited at the church in vain, as her betrothed never showed. Distraught and angered, Emily fled the church in the family wagon, whipping the horses into a frenzy. As she approached the bridge, she failed to negotiate the turn, sending wagon, horses, and jilted bride into the brook, killing all.

To this day, many local residents swear by Emily’s ghostly existence. There have been many reports of scratches and handprints appearing on vehicles that traverse the bridge at night, and people who are brave enough to venture into the structure on foot have heard screams, laughter, swinging rope, footsteps, and have experienced many technological failures. Cameras turn off, some photos come out blank, and mysterious orbs and images appear in other photos. Females who enter the bridge have felt burning scratches on their arms and backs, and many have seen Emily’s apparition calling for help.

Contoocook Covered Railroad Bridge, Contoocook, NH

Contoocook_Railroad_Bridge_NH-38-5Officially opened in 1850, the Contoocook Covered Railroad Bridge is the oldest of eight surviving covered railroad bridges and four surviving double-web town lattice railroad bridges in the country. The bridge survived a flood in 1936, a hurricane in 1938, and has undergone many repairs and renovations; however, it is still considered to be the most original structure of its type, as the few others remaining have all undergone major structural modifications. It was added to the National Register of Historic Places in 1980.

The New Portland Wire Bridge, New Portland, ME

New portland wire bridge meNestled in a rural setting in central Maine, the New Portland Wire Bridge is believed to be the only remaining wire (suspension) bridge in the nation. Constructed around 1864 to span the Carrabasset River, it has a single lane constructed of wooden planks, original shingle-covered towers and 4-inch steel cables anchored by 30-ton concrete and granite blocks, and a weight limit of three tons. The bridge, last rehabilitated in 2010, is decorated with lights around the holidays and is a popular place to take photos. It was added to the National Register of Historic Places in 1970.

Keystone Arches, Western MA

keystone arches bridge maTucked away in western Massachusetts stand the first keystone arch railroad bridges built in the nation. With heights up to 70 feet, these amazing structures were completely dry laid in the mid-1800s and designed to carry locomotives of that time, which weighed about 12,000 pounds. Incredibly enough, some of the arches are still in use today but carry locomotives that are about 430,000 pounds – or 35 times heavier than their predecessors. In 1912, parts of the railroad line were relocated, and the bridges that were bypassed have stood in place with absolutely no maintenance since that time. Accessible only by hiking trails, these magnificent arches make an enjoyable daytrip for nature enthusiasts and families.

Leonard P. Zakim Bunker Hill Bridge, Boston, MA

Leonard_P._Zakim_Bunker_Hill_Bridge_-_Boston,_MA_cropDesigned to combine Boston’s historic past with its future, The Leonard P. Zakim Bunker Hill Bridge was named in honor of civil rights activist Lenny Zakim. With its inverted Y-shaped towers that reflect the shape of the Bunker Hill Monument in neighboring Charlestown and its cables that are reminiscent of a ship in full sail, the bridge memorializes Boston’s colonial and shipbuilding history while maintaining a modern, sleek appearance. At 183 feet wide and 1,432 feet long, it is the widest cable-stayed bridge in the world and carries ten lanes of traffic in and out of the bustling city.

Thread City Crossing or “The Frog Bridge”, Willimantic, CT

Willimantic frog bridgeAdmittedly, Thread City Crossing over the Willimantic River in Connecticut is quite unremarkable — save for the four 11-foot tall frogs perched atop massive spools of thread. Affectionately known as The Frog Bridge, the 500-foot structure was built in 2000 and shows that the good folk of Willimantic certainly have a sense of humor. While the spools of thread were incorporated into the design in order to commemorate the Town’s history as a leading thread manufacturer of the 19th and 20th centuries, the frogs were included for a much cheekier reason.

frog bridge willimantic ctIn 1754, the townsfolk of Windham, CT (now Willimantic) were apprehensive and jittery. You see, Windham’s finest had joined Colonel Eliphalet Dyer’s regiment to fight in the French and Indian War, and those left behind were terrified. People slept lightly, with muskets tucked next to their beds, in anticipation of an imminent Indian attack. One very hot summer night, with the Town in the midst of a dreadful drought, the townsfolk were roused by an unearthly sound, described as “a shrieking, clattering thunderous roar.” Some believed the dreaded Indian attack had finally come, while others believed that Judgment Day was upon them. The townspeople ran into the streets, some falling to their knees to pray while others blindly shot their muskets into the night. A group of braver souls went off in search of the marauders, to no avail.

When the sun rose the next morning, the villagers were finally able to see what had caused the “terrifying” commotion. A millpond, two miles east of the village center, had almost completely dried up during the summer drought, and apparently the local bullfrog community had engaged in a turf war to claim ownership of the dwindling water supply. Hundreds of bullfrog carcasses riddled the perimeter of the pond, and, from that day forward, the Town became infamously — and, to the townsfolk, embarrassingly — known as the scene of the “Battle of the Frogs.”

Do you know of any bridges in New England that we should have included on our list? Let us know! We’d love to hear from you.

Water poverty on U.S. soil: why the Navajo Nation water crisis should shame us all

navajo water lady
Darlene Arviso delivers 4000 gallons of clean water to as many families as she can. Photo courtesy Navajo Water Project

CBS Sunday Morning News recently ran a cover story titled ​The Water Lady: A savior among the Navajo about Darlene Arviso, a Saint Bonaventure Indian Mission employee that brings water to Navajo Nation. This story brought to light the fact that 40% of the 173,000 residents of Navajo Nation lack access to clean, safe drinking water. Along with many others in the water industry, we here at Tata & Howard were aghast and aggrieved. After all, we are all very familiar with the 100% improved water and sanitation statistic that America boasts. But if 40% of Navajo Nation lacks improved water, how can this be? We decided to delve a bit deeper into the situation, and what we found was downright shocking.

Water poverty in the United States

First and foremost, the statistic of 100% improved water and sanitation in America is accurate. Navajo Nation, though geographically located on American soil at the four corners of Utah, Colorado, Arizona, and New Mexico, is not technically considered part of the United States of America. In the U.S., Indian reservations have what is called tribal sovereignty, or the inherent authority to govern themselves, and are actually independent nations. They may have their own police forces, elected officials, and courts, and the federal government recognizes these tribal nations as “domestic dependent nations.” This also means that they are not factored into the Clean Water Act or any other EPA ruling — and their numbers don’t count towards American statistics.

navajo nation mapWater poverty in the U.S. is no different than water poverty in Africa. It affects absolutely every aspect of daily life, including physical and mental health, education, and economic viability. Just like African women and children who leave their homes each day to fetch unimproved water that is miles away, thousands of Navajo also make a daily journey in search of water. For the “fortunate” who own cars, they may drive to find water, although the gas expense is almost unbearable for many. For those without vehicles, they must walk miles — just like their African counterparts — to find water, sometimes getting the water from livestock troughs that are rife with bacteria and contaminants, other times getting water from unregulated wells and stock ponds.

But the major difference between the African water crisis and the Navajo water crisis is that the Navajo live on the land of the richest nation on the planet. Chris Halter, director of Saint Bonaventure Indian Mission, has done work in some of the poorest parts of Africa and Latin America. Working in Navajo Nation for the past eight years, he notes, “It’s a third world country in the middle of the wealthiest country in the world.”

Uranium in Navajo water

Post WWII mining contaminated many water supplies with uranium
Post WWII mining contaminated many water supplies with uranium

Not only do the Navajo have to travel for miles to find water, but the water they do find is often contaminated. As a result of the heavy mining that took place in the area during the nuclear arms race following World War II, much of the water found in Navajo Nation is heavily contaminated with uranium or other radioactive particles. After testing 240 unregulated sources on Navajo land, the EPA found that 10% of these sources had radioactive particles exceeding federal drinking water standards. It took decades for residents to learn the truly disastrous effects of this contamination, with family members suffering from kidney ailments and cancer. Prior to WWII, Navajo sheepherders and remote farmers procured water from communal wells close to their homes. But now, with poison snaking through their water supply and environmental officials instructing them to avoid drinking it, they travel hours for water.

The EPA, Indian Health Service, and the U.S. Department of Housing and Urban Development have dedicated $27 million to water system upgrades, including improving water quality for homes with existing running water, and adding piping to another 800 homes. However, it becomes prohibitively expensive to add piping to the more remote residences, so the EPA instead has paid for four tanker trucks to bring water to various meeting points once per week. Serving 3,000 homes, these trucks sometimes run dry before everyone has had a chance to receive their allotted water, and sometimes the road to reach the tanker is impassable. Some residents make the four-hour round trip drive to Flagstaff, Arizona to buy bottled water when it goes on sale for such emergencies, while still others do not have enough money for gasoline and have instead simply uncapped wells that have been deemed toxic. Nearly half of the remote residents have been visited by cancer, and tumors and kidney failure are routine ailments for the Navajo.

Gold King Mine spill contaminates Navajo Nation water supplies

Mine waste from the Gold King Mine spill. Source: Jerry McBride—Durango Herald
Mine waste from the Gold King Mine spill. Source: Jerry McBride—Durango Herald

The Gold King Mine spill, which released three million gallons of water contaminated with lead, cadmium, arsenic, and other heavy metals into the Animas River in Colorado on August 5, has caused even further water woes for Navajo Nation. While the contamination is inconvenient for residents of the three states whose water supplies were affected by the spill, the impact to Navajo Nation is disastrous. Navajo Nation residents rely heavily on the water of the now contaminated San Juan River, into which the Animas River flows, for irrigation and livestock. Responding to alerts that the water is now toxic, the Navajo Farming Authority shut off all irrigation and intake points along the river. In the midst of their short farming season, farmers and ranchers are worried about finding ways to irrigate their crops and water their livestock. Clean water storage is being depleted at an alarming rate and Navajo Nation — not the EPA or the U.S. government — has had to shoulder the expense of additional water trucking. Navajo Nation President Russell Begaye is frustrated by the lack of response from the EPA, who, while inspecting the Gold King Mine, actually caused the toxic spill, and he is pleading for answers.

“Bottled water is becoming scarce, and my people want to know what we can drink after the clean supply runs out,” Begaye said. “We’re hauling water from wells outside the disaster area and using our own Navajo Nation funds to run these trucks back and forth. We desperately need help from outside to get good quality, safe drinking water.”

Added Begaye, “We are in the middle of farming season, which is only four to five months of the whole year, and farmers are begging me to help them save their crops, many of which are not fully ripe yet. The revenue from these crops is what our farmers need to live off for the rest of the year, so without irrigation water, they are doomed.”

What we can do to help

africa water crisisThere are countless water charities that have been created in order to provide improved water and sanitation to developing countries. The Gates Foundation, water.org, charity:water, our own charity of choice, Water For People, and countless others all strive towards this lofty goal. But who is helping those suffering from water poverty right here on American soil? Until a few years ago, the answer was nobody — but that has changed.

George McGraw is a human rights lawyer from Los Angeles and the founder of the non-profit DIGDEEP, which also provides water systems to developing countries. One day, McGraw received a phone call from a woman who wanted to make a contribution to DIGDEEP by sponsoring a well — but she had a stipulation. She told McGraw that she wanted her donation to be used in the United States. McGraw thought she was crazy, until she told him about Navajo Nation. And then he was just appalled.

“It really is an incredible injustice,” McGraw said. “If you’re born Navajo, you’re 67 times more likely not to have a tap or toilet in your house than if you’re born black, white, Asian, or Hispanic American.”

navajowaterprojectSo McGraw founded the Navajo Water Project, a subsidiary of DIGDEEP that is dedicated to improving Navajo Nation’s water supply. With the Saint Bonaventure Indian Mission, they are raising funds to dig wells, buy water storage tanks, and install in-home plumbing for those suffering from water poverty in Navajo Nation. In addition, the Navajo Water Project sells Pendleton blankets, where for every purchased blanket, another blanket is donated to a Navajo family and $100 is donated to the Navajo Water Project.

And every little bit helps. Our nation’s claim of 100% improved water and sanitation will not be a reality until every single person living on American soil has access to safe, clean water. The time to make that claim a reality is now. Visit www.navajowaterproject.org for more information.

UPDATE: Tata & Howard employee-owners recently donated over $2,000 to the Navajo Water Project. Read the press release here.

Does west coast drought affect east coast life? You bet.

USGS drought monitor week of 8.4.15
USGS drought monitor week of 8.4.15

Drought. Every day, there are multiple news stories about the historic drought affecting America’s west and south. In April, Governor Jerry Brown mandated that Californians cut their water usage by 25%. Almond growers are being lambasted for growing a thirsty crop, golf courses are allowing their greens to turn into browns, and aquifers are being depleted at a rate far greater than they are being replenished. The outlook is bleak. Seven states are literally running out of water, and scientists are scrambling to try to address the unprecedented drought.

Yet in the midst of all of this, New Englanders are rather lackadaisical. After all, Lowell, Massachusetts just experienced the snowiest winter on record with an unprecedented 120.6 inches, earning the city the title of “snowiest city in the United States” for the 2014-2015 winter, and the summer has been fairly mild. On August 6, the USGS drought monitor showed a couple of areas of mild drought, but New Englanders have come to expect regular, soaking rains, and nobody seems too concerned. After all, New England isn’t affected by the exceptional drought of the west coast. Or is it?

Extreme Weather on Both Coasts

Newton's Third Law: for every action, there is an equal and opposite reaction
Newton’s Third Law: for every action, there is an equal and opposite reaction

Sir Isaac Newton’s Third Law states that for every action, there is an equal and opposite reaction; and while the law refers to motion, it can also be applied to weather. The severe drought and high heat of the west is directly related to the cold and snow in the northeast, and both extremes have been attrributed to global climate change. In the period of January to March of 2015, New England experienced its coldest winter on record. Providence, RI, Worcester, MA, and Hartford, CT broke all cold records during that time, while Boston, MA experienced its third coldest winter on record, with its top two coldest periods dating all the way back to the 1800s. On the opposite coast, Sacramento, CA experienced its hottest March on record, with temperatures rising to those that are more typical to May than March. Weather balances the atmosphere, so when an extreme takes place in one geographic location, the opposite extreme will occur somewhere else in the world.

“Ridiculously Resilient Ridge”

Photo Brett Albright/NWS San Diego
Photo Brett Albright/NWS San Diego

Stanford University Ph.D. candidate Daniel Swain, who writes The California Weather Blog, coined the alliterative nickname for the high-pressure area that sits over the eastern Pacific Ocean for months at a time. And, like the Ridiculously Resilient Ridge itself, the name has stuck. The ridge is basically a mountain of air that stalled off the coast of California and British Columbia, causing any storms that would typically hit California to trend farther north instead to the Alaskan panhandle and northward. The trough, just as alliteratively coined the “Terribly Tenacious Trough” by Jennifer Francis, Research Professor at Rutgers University, in turn sat over the east coast, bringing with it unusually cold, wet weather. This weather pattern, which would be typical if it lasted just a short period of time, has been extreme in that it has been incredibly persistent, developing for months at a time since 2012. In addition, climatologists are scratching their heads over it, as there is no clear reason why it has been so persistant.

Economic Impact

This car was almost completely covered after a blizzard in January 2015
This car in Massachusetts was almost completely covered after a blizzard in January 2015

New Englanders took a significant economic hit during the extreme winter of 2014-2015 due to exhausted snow removal budgets, damaged property, and high utility and heating bills. Ice dams and roof issues from the excessive amount of snow caused damage to many homes, and insurance companies are still reeling from the claims processed over the winter, which also included higher than average vehicle and accident claims. Many accidents were attributed to the severe winter and snowfall, and to the gargantuan snow piles that made driving and maneuvering in parking lots even more treacherous. And even more problems ensued when the snow began to melt in the spring.

Flooding

Flooding is not just caused by extreme rainfall but is in fact influenced by many factors, such as soil conditions and sea level. In the northeast, excessive precipitation, like the record snowfall experienced this past winter, increases soil moisture content, which in turn increases the potential for flooding. In addition, northeast sea levels have risen over a foot since last century, which already puts New Englanders at increased risk for flooding.

Food Supplies

It takes about 400 gallons of water to produce one pound of almonds
It takes about 400 gallons of water to produce one pound of almonds

California grows more food for consumption in the United States than any other state. In fact, nearly half of all the fruits, vegetables, and nuts grown in the entire country are grown in California, and the state is the fifth largest supplier of food in the world. Growing over 450 different crops, California is the exclusive U.S. producer of many crops including almonds, artichokes, clover, dates, olives, pistachios, and raisins. In addition, California also produces almost all of the grapes, lemons, lettuce, and tomatoes grown in the nation.

Prices of these crops have already risen, and are expected to rise even more. 80% of the water used in California is used by farmers and ranchers, and with the exceptional drought, many farmers have had to leave their fields fallow or pay to pump water from the ground. The economic hits to farmers are passed onto consumers, resulting in higher priced produce and nuts for the rest of the nation. If the drought continues, California farmers may be forced out of business, resulting in national food shortages. And over on the opposite coast, Florida experienced freezing temperatures that affected the 2014-2015 orange crop, resulting in the smallest yield of oranges since the 1964-1965 season.

Looking Ahead

"The blob" is a very large area of warm water that scientists are hoping may end the California drought
“The blob” is a very large area of warm water that scientists are hoping may end the California drought

At this time, forecasters are hoping that the extreme drought in California may be coming to an end. The combination of El Nino and “the blob” create a high possibility for a temperate, wet winter in the Pacific Northwest, and California residents and businesses are keeping their fingers crossed — as should New Englanders. Once again referring to Newton’s Third Law, we can safely assume that a mild, wet winter for California would likely produce a mild, dry winter for the east coast. And that is something the whole nation should celebrate.

International Beer Day: Celebrating Water Efficient Breweries

beer samplerIn honor of International Beer Day, we are taking a look at what breweries are doing to conserve the number one ingredient in brewing beer: water. Due to water shortages, increased demand, and heightened awareness, many breweries have taken steps to increase water efficiency and to implement water saving techniques in their brewing. Utilizing a myriad of methodologies and technologies, an increasing number of today’s breweries have begun to focus on brewing beer with water efficiency and conservation at the forefront of their business.

Anheuser-Busch InBev

Anheuser-Busch AgriMetThe undisputed behemoth of the beer world with 25% of the global beer market, Anheuser-Busch InBev has implemented water-saving measures in many ways. Some of its plants use reclaimed water for equipment cleaning, irrigation, firefighting, and other local uses, such as watering a soccer field in Peru and manufacturing bricks in Brazil. And, as would be expected from such an enormous, influential company, Anheuser-Busch InBev is piloting agricultural programs that it hopes will spread to all facets of agriculture. To start, they have initiated a “Smart Barley” program with 2,000 barley growers in Idaho and Montana. Since agriculture accounts for 95% of the water used in beer making, increasing agricultural water efficiency is the key to breweries becoming better water stewards. Utilizing sensors in the field, cooperative programs, and its own hybridized, drought-resistant seeds, Anheuser-Busch InBev hopes to decrease agricultural water usage by 25% over the next two years.

Even before the implementation of its agricultural program, Anheuser-Busch InBev had managed to reduce its water footprint to the point that it now uses less water than any other major brewer. As of this writing, the company uses about 3.2 bottles of water for each bottle of beer, and the industry average is seven bottles of water per each bottle of beer. In fact, from 2013-2014, Anheuser-Busch InBev saved as much water as is used in the manufacture of four billion cans of Budweiser.

MillerCoors

Barley requires 237 gallons of water per every pound grown
Barley requires 237 gallons of water per every pound grown

MillerCoors is also a giant in the beer industry with 30% of the American beer market. Like its major competitor Anheuser-Busch InBev, it also has an Idaho-based pilot project called the Showcase Barley Farm in Silver Creek Valley, Idaho. Utilizing precise irrigation techniques and hardier crop planting, MillerCoors is researching the best ways to increase its water efficiency. Already a success in 2011, Showcase Farms saw a 9% reduction in water usage by precision irrigation alone.

MillerCoors has also implemented water efficiency and conservation measures at its breweries such as utilizing recirculated water rather than freshwater for cooling, reusing wastewater for non-potable uses, cleaning cans with ionized air rather than water, sanitizing systems with bleach instead of hot water, and installing waterless lubrications throughout their operations. The water reclamation system in their Milwaukee brewery alone saves 100 million gallons of water per year. The company uses 3.53 bottles of water for each bottle of beer it produces — just a tad more than Anheuser-Busch InBev — but it hopes to slash its water footprint an additional 15% by 2020.

Both Anheuser-Busch InBev and MillerCoors have made huge strides towards water efficiency, and because of their massive size, the impact is significant. However, many smaller craft breweries are doing just as much — and in many instances, more — to become water and environmental stewards.

Full Sail Brewing Company

full sail brewing sustainabilityOregon-based Full Sail Brewing Company is fully committed to water conservation. They operate a hot water recovery system that saves over three million gallons of water per year. Employees work four ten-hour days, which saves another three million gallons of water per year. They have installed special filters to maximize malt extract while minimizing water usage, they’ve reduced spray nozzle apertures on bottle and keg washers, and they’ve reduced cooling water usage by adding a glycol chiller in tandem with their heat exchanger. These measures save an additional 4.1 million gallons per year. The result? The forward thinking company uses just 2.5 bottles of water for each bottle of beer produced — the lowest ratio we have found. But they don’t stop there. Full Sail Brewing operates its own voluntary wastewater treatment plant, which reduces the load to the municipal treatment plant by pre-treating the wastewater. In addition, they distribute their treatment plant’s biosolids to local farmers and an orchardist for fertilizer.

Cape Cod Beer

Hyannis, Massachusetts-based Cape Cod Beer utilizes water reclamation and conservation efforts in their brewing, but they take it a step further. Their beers are only sold in refillable kegs or growlers, and they are passionate about recycling. In addition, they donate all used and leftover grain to local farmers for feed or compost, and they were recently certified “Cape & Islands Green” Level 1.

California Brewers

Photo by Kerrie Lindecker The city of cloverdale celebrated The city of cloverdale celebrated the completion of two new wells during a ribbon cutting Monday. Pictured above are: Alan Hodge, water treatment plant operator, Bear Republic Brewery’s Richard Norgrove Jr., Darren Hernandez, senior water treatment plant operator, city councilmember Bob Cox, City Planner Karen Massey, Joanne Cavallari, City Finance Manager, Chamber of Commerce executive director Robin Wilkerson, Bear Republic owner Richard Norgrove Sr., Citrus Fair Queen Amanda Lawson, Reef Atwell with the USDA, Mayor Carol Russell, City Manager Paul Cayler and City Public Works Director Craig Scott
Photo by Kerrie Lindecker
The City of Cloverdale celebrated the completion of two new wells during a ribbon cutting

Bear Republic Brewing Company, whose corporate office and larger brew house are located in Cloverdale, California, actually partnered with the City of Cloverdale to dig two new water wells, which went online last August. Because the City didn’t have the funds for the new wells, Bear Republic prepaid several years of its water fees — $466,000 — in order to allow the city to complete the project on time and under budget. Bear Republic also conducts regular audits for leaks, practices conservation and reclamation in its operations, and is installing a wastewater pre-treatment plant that will generate heat and electricity with the methane it produces as well as reclaimed water for irrigation and cleaning.

In Escondido, California, the nation’s tenth largest craft brewer, Stone Brewing Company, treats all of their brewing wastewater — not to be confused with restaurant or restroom wastewater — with an aerobic digestion and filtration process. The reused water is pure and they use it for cleaning. “From a good brewing practices standpoint, it’s good to watch water usage, especially when you live in a dry area like we do,” explained Mitch Steele, Stone’s Brew master. He also added that they test the reclaimed water frequently and that, if regulations allowed, he wouldn’t hesitate to drink it.

Adding to their already environmentally friendly business practices, both Stone Brewing and Bear Republic have been proactive in sharing their practices and knowledge with the rest of the craft beer community through webinars and on-site tours.

Brewers for Clean Water

So far, over 50 craft breweries, including eight New England breweries, have joined the National Resource Defense Council’s Brewers for Clean Water initiative. The program aims to spread awareness of the Clean Water Act and to support initiatives that protect and conserve our nation’s water. “As we continue to see the craft beer segment grow, we as brewers owe it to the communities we live, work, and play in to be mindful of protecting our waterways as we strive for growth that is environmentally and socially responsible now and down the road,” said Mat Stronger of Allagash Brewing Company, a Portland, Maine-based brewery that is active in the Brewers for Clean Water initiative.

Jester King Brewing with Harvested Rainwater

Jester King's rainwater collection tanks
Jester King’s rainwater collection tanks

Austin, Texas-based Jester King Brewery recently purchased 3,000-gallon rain water collection tanks that will collect rainwater from the roof of both their brewery and adjacent beer hall. They expect to capture an estimated 10,000 barrels of rainwater per year that will be disinfected using ultraviolet and reverse osmosis purification and then be used in their brewing process.

Beer Made with 100% Reclaimed Water

Clean Water Services, a wastewater treatment utility that serves the Portland, Oregon metro area, asked for approval from the state to allow members of the “Oregon Brew Crew” to use recycled sewage water from its Forest Grove plant for beer-making. They received initial approval from the Oregon Environmental Quality Commission and the Oregon Health Authority, but will need further approval for a recycled water reuse plan before forging ahead. Last year, the Oregon Brew Crew produced test batches of beer made from 30% reclaimed water, which met with rave reviews. But, according to the dozen brewers, using 100% reclaimed water will be a more exciting challenge.

“I’m trying to think of a really cool recipe. When they told us 100 percent we’re like oh man, first the names, then the recipe comes later. And I’m excited,” said Lee Hedgmon, president of the Oregon Brew Crew.

Clean Water Services believes that educating the public about recycled water will lead to its ultimate acceptance, and they don’t think there’s any better way to start that conversation than with beer.

Sewage Beer

waste-water-beer

Really. It’s called Activated Sludge, has a radiation symbol on its label, and is brewed with purified Milwaukee Metropolitan Sewerage District wastewater plant effluent that has NOT gone through the final cleaning process typically necessary for potable reclaimed water.

Theera Ratarasarn, a wastewater engineer with the Wisconsin Department of Natural Resources, enjoys home-brewing beer to relax after his two young sons have gone to bed. After doing some thinking, he decided he wanted to raise awareness of the quality of plant effluent, and figured the best way to do so was with his evening hobby.

“I wanted to get people talking,” he said “There’s a potential use for what we discharge into lakes and streams.”

Ratarasarn filtered, treated, distilled, and tested the water before beginning to make five gallons of his Activated Sludge, a wheat ale with 5.15% alcohol by volume. And then came the true test. Ratarasarn presented his sewage brew to a taste panel at Lakefront Brewery, where Activated Sludge competed against Lakefront Wheat Monkey. The result? “It’s one of the better home brews I’ve ever had,” stated Mitchel De Santis, who graded the beer a seven out of ten.

“Everybody I talk to wants one,” added Ratarasarn.

Brewing Up Water Efficiency

Breweries are some of the largest consumers of water, yet have proven that they are some of the most active conservationists. We’ve heard it before: everyone loves beer, so it is an easy way to spread awareness, start conversation, and implement efficiency and conservation techniques. While we may not be drinking sewage beer any time soon, we can all agree that U.S. breweries are doing their part in the water conservation effort — and that’s something to which we can raise a toast. Happy International Beer Day!

Drugs in Drinking Water

Prescription_pills_spillingPharmaceuticals (prescription, over-the-counter, and veterinary drugs) and personal care products (products such as cleansers, fragrances, and cosmetics used for personal reasons) in drinking water have been a subject of much concern recently. Studies have shown that a myriad of pharmaceuticals including antibiotics, anabolic steroids, anti-anxiety medications, hormones, and anti-seizure medications have been found in the drinking water supplies of at least 41 million Americans in 24 major metropolitan areas, from east coast to west coast. And while these numbers alone are alarming, they represent only a very small portion of the problem.

In addition to pharmaceuticals and personal care products (PPCPs), studies have found that illicit drugs are also in our drinking water. Drugs detected include cocaine, MDMA (ecstasy), opioids, cannabinoids, and amphetamines, which have been found in sewage wastewaters, sewage sludge, surface waters, and drinking water. All of these drugs have potent pharmacological activities, and it is therefore generally believed that they have adverse effects on human health and the environment, including aquatic organisms.

How did they get there?

DrinkingWaterSupplyArea_bluesign1People take drugs, and their bodies absorb only a portion of what they ingest. The rest is excreted and flushed down the toilet, where it makes its way to wastewater treatment facilities. The wastewater undergoes a treatment process to remove nutrients and bacteria before it is discharged back into surface waters, including reservoirs, lakes, and streams, which in turn feed municipal water treatment plants for distribution. And there are no treatment processes specifically engineered to remove pharmaceuticals or drugs from wastewater. Even more alarming, many widely prescribed medications such as anti-epileptic medications, tranquilizers, and cholesterol fighters actually resist most existing treatment processes, save two. Reverse osmosis, a treatment technology which forces water through a membrane filter, successfully removes all pharmaceuticals, but is prohibitively expensive for large-scale use and wastes several gallons of polluted water for each one made drinkable. Activated charcoal, which filters organic matter and drugs from wastewater, is a better treatment option because it doesn’t waste water like reverse osmosis does. Unfortunately, it is still extremely expensive to install.

There is no way to determine the effects of drugs in drinking water because there is no regulation over the presence of most drugs, illicit or otherwise, in treated wastewater, surface water, or drinking water. Also, there are no studies that monitor the long-term effects of low-dose drugs on human health. However, given the very nature of pharmaceuticals — they are meant to be active in small doses — it is highly likely that their presence in our nation’s water supply is not without effect. “These are chemicals that are designed to have very specific effects at very low concentrations. That’s what pharmaceuticals do. So when they get out to the environment, it should not be a shock to people that they have effects,” noted zoologist John Sumpter of Brunel University in London.

The methadone problem

MethadoneThere is, however, one drug that is definitively known to be extremely problematic: methadone. Used in the treatment of our nation’s epidemic heroin problem as well as for chronic pain disorders, methadone is prescribed over four million times annually — and that number is rising. Approximately 28% of ingested methadone is not absorbed by the body but is instead excreted in urine, ending up in our wastewater. A common chemical used in water  treatment is chloramine (not to be confused with chlorine). In fact, nearly a quarter of the U.S. population drinks water treated with chloramine disinfectants. Methadone reacts with chloramine to form N-nitrosodimethylamine, or “NDMA” for short, which the World Health Organization has labeled “clearly carcinogenic” because of its ability to cause stomach, liver, and colon cancer after being ingested.

“NDMA is a very potent carcinogen,” commented environmental chemist Susan Richardson of the University of South Carolina. “It’s being commonly found in drinking water well above the health reference level for cancer, and the U.S. Environmental Protection Agency is currently deciding whether to regulate it.”

Considering half of the drinking water samples obtained by an AP study were found to contain a level of NDMA that would be considered dangerous, it is no surprise that Massachusetts and California have already implemented regulations concerning NDMA, although they are the only two states in the nation to do so. In contrast, all of Canada has regulations in place fully banning NDMA. In the U.S., the decision might not be imminently forthcoming, as drugs in drinking water presents a unique challenge. The Food and Drug Administration (FDA) oversees drugs, while the U.S. Environmental Protection Agency (EPA) oversees environmental issues, so collaboration — and agreement — between the two organizations is necessary.

In conclusion

It seems unlikely that doctors will start prescribing fewer medications or that our nation’s illicit drug problem will cease to exist. Therefore, it is imperative that research is conducted and regulations put in place to protect the public from the health hazards caused by drugs in drinking water. Of course, with these regulations will come the need for improved infrastructure to comply, which in turn will require funding for already financially strained water and wastewater utilities. There is no easy answer. But one thing is certain: drugs in drinking water is an urgent national problem that needs to be promptly addressed.

inhabitat.org
pbs.org
disabled-world.org
Associated Press

The 7 Most Interesting Dams in the United States

Grand Coulee Dam
Grand Coulee Dam

1. Grand Coulee Dam

The Grand Coulee Dam, a concrete gravity dam, is located on the Columbia River west of Spokane, Washington and is listed by the American Society of Civil Engineers as one of the seven civil engineering wonders of the United States. The dam’s reservoir, Franklin D. Roosevelt Lake, stretches 150 miles north and almost reaches the Canadian border. The dam was constructed to provide hydroelectric power and irrigation.

Even more enormous than the Great Pyramid of Giza, the Grand Coulee is an absolutely massive structure, and one of the largest ever constructed by mankind. The 550 foot tall dam contains over 12 million cubic yards of concrete, which is enough to build a highway all the way from Miami, Florida to Seattle, Washington, and stretches 5,223 feet — just 57 feet shy of a mile. The construction of the Grand Coulee dam took place between 1933 and 1942 and provided jobs to thousands of men during the Great Depression. The Grand Coulee provided the immense electrical power needed to manufacture aluminum for the production of World War II planes and ships, and, continuing in its war-like vein, it also powered the production of plutonium at a secret lab on nearby Hanford Site. Plutonium, of course, turned out to be the key ingredient of the atomic bomb – and the rest is history.

The dam is not without some controversy. 77 men lost their lives during the construction of the dam and its original two powerhouses, and another four perished during the construction of the third power plant constructed between 1967-1975, bringing the final death count to 81. Also, creation of the reservoir partially flooded the ancestral lands of Native Americans and forced the relocation of over 3,000 people, and environmentalists have condemned the dam for blocking the migration of salmon and steelhead to spawn.

Today, the Grand Coulee is used to irrigate about 670,000 acres of farmland used for growing grains, fruits, vegetables, and wine grapes, as well as livestock grazing.

Hoover Dam
Hoover Dam

2. Hoover Dam

The Hoover Dam, located in the Black Canyon of the Colorado River on the border of Arizona and Nevada, is a massive concrete arch-gravity dam whose 600-foot base is as wide as the full length of two football fields. The giant concrete wedge stands 726 feet tall, or the height of a 60-story building, and holds back the immense power of the Colorado River. The Hoover Dam was constructed in order to generate electricity as well as provide irrigation and control flooding, and today generates about four billion kilowatts of electricity per year – enough to provide the power needs for 1.3 million people.

At the time of its construction between 1931 and 1935, the Hoover Dam was the most expensive engineering project in United States history at a cost of $49 million, which, adjusting for inflation, would be $700 million by today’s standards. The Hoover Dam created the enormous reservoir known as Lake Mead, which even today is the largest manmade reservoir in the U.S. at 110 miles long and 560 feet deep. In addition, the Hoover Dam and beautiful Lake Mead have created a bustling tourism community by providing plenty of outdoor recreation including boating, swimming, and fishing. Lake Mead also supplies municipal water for Las Vegas, Phoenix, and Tucson, and provides storage during drought.

Building the Hoover Dam took enormous effort. Construction of the dam utilized 91.8 billion cubic feet of concrete to create a retaining wall that weighs about 6.6 million tons. In fact, the mass of concrete in the Hoover Dam would pave a road from San Francisco to New York City. In addition, the volume of water in Lake Mead, when filled to capacity, is enough to submerge the entire state of Connecticut in ten feet of water. Incredibly enough, although the dam was expected to take five years to construct, it was actually completed ahead of schedule. 96 people died during the construction of the Hoover Dam; however, contrary to the popular urban legend, none of the deceased are encased within the dam’s concrete.

Oroville Dam
Oroville Dam

3. Oroville Dam

Oroville Dam, located about 70 miles north of Sacramento at the three forks of the Feather River, is the tallest dam in the United States, standing over 770 feet tall. The dam is an earthfill dam that holds back Lake Oroville, a manmade reservoir containing 3.5 million acre-feet of water. Oroville Dam stretches three quarters of a mile at its base and almost 7,000 feet across at its top.

The most highly monitored dam in the world during construction, the Oroville Dam was built between 1961 and 1967, and was officially dedicated in 1968. Just seven short years later, in 1975, a significant earthquake struck a few miles southeast of Oroville, and the new dam was put to the test. To the credit of the engineers, the dam oscillated with the earthquake and did not suffer a solitary crack or leak.

The Oroville Dam, along with its reservoir, Lake Oroville, not only provides drinking water, water storage, and hydroelectric power, it also protects downstream residents from the flooding of the Feather River. Providing about 750,000 acre-feet of flood control storage, the Oroville Dam has minimized damage from floods that have occurred in every decade since the dam’s construction. It also provides a beautiful location for a plethora of recreational activities including boating, camping, and fishing.

Tragically, 34 men died during the construction of the Oroville Dam. Just two years after the dam’s completion, President Richard Nixon signed the Occupational Safety and Health Act (OSHA) into law, drastically reducing the number of workplace accidents and casualties.

Redridge Steel Dam
Redridge Steel Dam

4. Redridge Steel Dam

Located across the Salmon Trout River in Redridge, Michigan, the Redridge Steel Dam is is a flat slab buttress dam constructed of steel. Steel is rarely used for construction of dams, which are typically earthenworks or masonry, and the Redridge Steel Dam is one of only three steel dams ever constructed in the United States. The other two are the Ashfork-Bainbridge Steel Dam, constructed in Arizona in 1898 to supply water for railway operations and still fully operational, and the Hauser Lake Dam, which was constructed in 1901 in Montana but failed less than a year later.

Timber Crib Dam Falls
Timber Crib Dam Falls

Prior to the construction of the Redridge Steel Dam, the Atlantic Mining Company built a timber crib dam across the Salmon Trout River in order to create a reservoir to supply water for mining operations. The reservoir created by the timber crib dam was insufficient, and so the Redridge Steel Dam was built; however, the original timber crib dam remained submerged in place upstream of the new dam. After operating for several decades, the Redridge Steel Dam fell into disrepair after mining operations ceased, and in 1941, the dam broke and caused a flood. The dam owners opened the spillways and cut holes in the steel dam so that it would no longer retain any water, and in this way the original timber dam was revealed — and along with it, breathtaking waterfalls.

With the threat of being labeled a “significant hazard” dam by the Michigan Department of Environmental looming, the timber dam was lowered 13 feet in 2004 in order to relieve pressure and make it safer. While a more permanent solution is still needed, both dams have been estimated to be safe for the foreseeable future, allowing visitors the ability to appreciate the lovely falls created by the old timber dam.

Roosevelt Dam
Roosevelt Dam

5. Roosevelt Dam

Constructed between the walls of a box canyon near the Salt River and Tonto Creek, the Roosevelt Dam was the first water project built under the 1902 Reclamation Act, and was the largest masonry dam in the world at that time. Italian stonecutters carved the stones used in the construction of the dam from the nearby cliffs, and when completed, the dam stood 280 feet tall and 184 feet wide at its base. The dam supplied water and electricity while also controlling the dangerous floods that had plagued the nearby Phoenix area.

Construction of the dam occurred between 1905 and 1911 while Arizona was still just a territory, and the total cost was $10 million. Supplying electricity to rural households, the Roosevelt Dam was a modern marvel. It would be ten years before the National Rural Electrification Act brought power to the rest of rural America, and so Phoenix quickly became a bright, modern city, and Arizona officially became a state only one year after the dam’s completion. The Roosevelt Dam was listed as a National Historic Landmark in 1963 and, to this day, it adorns the state seal of Arizona.

Dworshak Dam
Dworshak Dam

6. Dworshak Dam

Located just outside the city of Orofino, Idaho on the North Fork of the Clearwater River, the Dworshak Dam is the tallest straight axis gravity dam in the Western Hemisphere and the third highest dam in the United States. Constructed between 1966 and 1973, the Dworshak Dam is primarily used for flood control and hydroelectric power. The dam has three power-generating unts and received authorization for three more in 1990; however, the authorizations were revoked amid political controversy and citizen opposition when it was found that a second dam would be needed to handle peak loads.

The reservoir created by the Dworshak Dam holds almost 3.5 million acre-feet of water and is 53 miles long. The dam stands 717 feet tall, generates 380,000 kilowatts of power, and contains more than twice the concrete than does Cheope’s Great Pyramid in El Giza, Egypt.

Perhaps more notable than its significant mass is the controversy that has surrounded the Dworshak Dam since its inception. In his travel guide Idaho for the Curious, Cort Conley writes, “There have always been more politicians than suitable damsites. Building the highest straight axis gravity dam in the Western Hemisphere, on a river with a mean flow of 5,000 cubic feet per second, at a cost of $312 million, in the name of flood-control, is the second-funniest joke in Idaho. The funniest joke is inside the visitor center: a government sign entreats, ‘…help protect this delicate environment for future generations.’ The North Fork of the Clearwater was an exceptional river with a preeminent run of steelhead trout, and the drainage contained thousands of elk and white-tail deer. The Army Corps of Engineers proceeded to destroy the river, habitat, and fish; then acquired 5,000 acres for elk management and spent $21 million to build the largest steelhead hatchery in the world, maintaining at a cost of $1 million dollars a year what nature had provided for nothing.”

New Cornelia Mine Tailings Dam
New Cornelia Mine Tailings Dam

7. New Cornelia Mine Tailings

OK, so the New Cornelia Mine Tailings is not really a dam per se, but it IS often cited as the largest dam structure in the country by its volume of 7.4 billion cubic feet. Located just south of Ajo, Arizona, the New Cornelia Mine was operational from 1912 until 1983, when it closed due to the low price of copper. Mine tailings are waste materials such as bits of rock, dirt, mud, and process effluent from the mining process. While the mine was operational, the tailings were heaped into an enormous pile in order to hold back future tailings, and therefore the tailings pile is actually considered a dam. Today, Phelps Dodge owns the mine. There has also been recent talk of mining the tailings, although nothing has yet been scheduled.

Do you agree with our list of the 7 most interesting dams in the United States or do you know of a dam that should be included? Let us know – we’d love to hear from you!

 

The Criticality of Energy Efficiency for Water and Wastewater Utilities

electricity meterMunicipal water and wastewater services require electricity, and lots of it. Drinking water and wastewater systems in the United States account for 3-4% of our nation’s total energy usage and add over 45 million tons of greenhouse gases to our environment each year. High energy costs for water and wastewater utilities are straining municipal budgets and creating unsustainable operating costs, and with prices already on the rise due to increasing regulations and demand, passing energy costs on to consumers simply isn’t a viable option. Drinking water and wastewater treatment plants account for 30-40% of the total energy consumed by municipal governments, making them the single largest energy consumers in the municipal sector. Add to that the fact that energy currently accounts for an average of 40% of operational costs for drinking water systems and is expected to increase to 60% within the next 15 years, and it becomes clear that energy efficiency for water and wastewater utilities is no longer a choice – it’s a necessity.

But it’s not all doom and gloom. Energy costs for water and wastewater utilities are indeed significant, but they also represent the largest controllable cost of providing water and wastewater services. Studies have estimated that 15-30% energy savings is readily achievable through cost-effective efficiency measures in water and wastewater plants, and that utilities can realize significant financial returns with a payback period from only a few months to about five years.

lightbulb water Very often, utilities can save substantially by increasing the efficiency of pumps and aeration equipment at water and wastewater treatment plants. In addition, operational changes such as proactively shifting energy usage away from peak demand times where electricity is most expensive, or generating electricity and heat from biogas, can greatly reduce energy usage. Water and wastewater utilities are not typically designed and operated with energy efficiency as a primary objective, as more pressing concerns such as regulatory requirements, capital expenditure, reliability, and securing funding typically take precedence. However, it is important not to overlook these systems when communities fund energy improvement projects, as significant energy and monetary savings can be realized through operational changes and capital improvement projects. And these savings make a big difference. Even a 10% energy reduction in our nation’s drinking water and wastewater systems would save about $400 million and five billion kWh annually, greatly reducing both the financial burden currently plaguing water and wastewater utilities as well as our impact on the environment.

But where to start? The first step towards making informed decisions that result in the highest return on investment (ROI) in the shortest amount of time is an energy audit. Since 2008, EPA has been actively working with water and wastewater utilities to help them become more efficient and to reduce operational costs, and one of the key steps in their process is an energy audit. A quality water and/or wastewater energy audit should focus on energy efficient equipment replacement, operational modifications, and process control that will lead to improved efficiency and cost savings with the shortest possible payback period, and includes processes such as conducting on-site observations, testing existing systems and equipment, monitoring power usage and costs, and developing strategies to limit demand charges.

Kachina, Arizona
Kachina, Arizona

As an example, Tata & Howard conducted an energy audit on the water production assets and distribution system of the Kachina Village Improvement District (KVID) in Arizona. During the course of the study, the well pumps and booster pumps were evaluated relative to their efficiency while the operational practices of the distribution system were reviewed. The results of the study indicated that the pump efficiencies ranged from 27% to 60%, and it was recommended that the KVID replace several low performing pumps. The cost of the upgrades was $136,000 and the project would be eligible for a $20,000 rebate from Arizona Public Service (APS). With the upgrades, KVID would save approximately $23,000 in annual power costs, resulting in a projected ten-year savings of $114,000 and a payback period of five years.

For new construction, it is imperative to choose a design firm with clear experience in designing energy efficient projects, as the design phase is the absolute best time to think about energy efficiency as well as renewable energy options. A plant that is designed with energy efficiency and renewable energy from the beginning has the potential to actually produce more energy than it uses.

Allocating the resources and time to conduct an energy audit and implement the required capital improvements and operational changes can produce significant benefits. Energy audits can pinpoint the most energy-consuming equipment, detect issues with aging equipment, and expose operational issues, as well as determine which upgrades would result in the best ROI. The result is a well-defined, defendable plan of action that will result in optimal energy savings.

www.epa.gov
www.esmap.org
www.nrel.gov
www.ase.org
www.mass.gov

SaveSave

SaveSave

The Value of Hospital Water Audits

Hospitals guzzle water.

hospital water auditsConsider this: a typical American uses about 150 gallons of water per day, the average German uses about 50 gallons per day, and the average African uses just 5 gallons, while United States hospitals utilize 570 gallons of water per staffed bed per day – almost quadruple the already tremendous amount utilized by the average American. In fact, hospitals account for 7% of the total commercial and institutional water usage in the United States. Admittedly, hospitals require a significant volume of water to support critical functions such as sterlization, sanitation, and heating and cooling, but there are certainly areas in which improvements can be made. Many areas of the United States are currently plagued by severe drought, depleted supply, and increased demand, as well as water and sewer rates that are rising far faster than the rate of inflation, and while many hospitals have been quick to address their energy usage and to implement energy-efficient practices, few have considered water efficiency. However, that is about to change.

Saving water not only protects our most precious resource, it also provides an attractive return on investment (ROI) for most hospitals. But reducing water usage in hospitals isn’t as simple as turning off the faucet — it requires careful research and consideration of a variety of factors including cost and ease of implementation, rate of return, and staff support. Hospital water audits can help healthcare facilities determine which operational and capital measures to implement and in what order, and can pinpoint the measures that will provide the largest ROI and most significant environmental impact while being the least disruptive to hospital operations.

blue showerOn average, implementing water efficiency measures decreases operational costs by 11% and water usage by 15%, and results in greater patient and staff satisfaction. Also, by installing water-efficient equipment, hospitals can take advantage of utility rebates and financial incentives that, when combined with operational savings, often result in equipment upgrades easily paying for themselves. And this is just the tip of the iceberg. Larger hospitals can take their water efficiency even further by collecting rainwater and condensate and utilizing it for non-potable functions such as irrigation and toilet flushing, like this state-of-the-art New Orleans hospital has done.

For smaller facilities that simply don’t have the capital expenditure needed for large-scale capital improvements, even inexpensive upgrades such as low-flow showerheads, reduced gallon-per-flush kits, and flow-control valves on sinks can add up to big savings. For example, Tata & Howard completed a water audit for the MetroWest Medical Center (MWMC) in Framingham, Massachusetts and estimated that the facility could save almost $30,000 per year after investing just $5,000 per year over a six-year period. And as an added bonus, savings from low-cost upgrades enable hospitals to fund future water saving measures.

With water becoming scarcer and more expensive, hospitals need to look to conservation and efficiency in order to remain profitable. Water audits provide the information, prioritization, and justification needed to implement a successful conservation and efficiency program, and typically pay for themselves in a very short time period. Hospitals that design water conservation strategies today will find themselves ahead of the curve and enjoying significant savings well into the future.

5 family-friendly water and wastewater field trips in New England

Summer is here, and with it comes long, lazy days, school vacation, and, of course, family trips. When the beaches, amusement parks, and movie theaters start to get stale, why not take a water or wastewater field trip to explore the inner workings of our nation’s water and wastewater infrastructure? We’ve assembled five excellent water and wastewater field trips that are right here in beautiful New England. These trips provide STEM (Science, Math, Engineering, and Technology) education while also being engaging and fascinating. And these trips aren’t just for budding engineers. Half of all STEM jobs do not require a college degree and pay higher than non-STEM jobs with similar educational requirements.

Top 5 Family-Friendly Water and Wastewater Field Trips in New England

deer_island_wastewater
Deer Island Wastewater Treatment Plant

1. Deer Island Wastewater Treatment Plant, Boston, MA — Operated by the Massachusetts Water Resource Authority (MWRA)

The MWRA offers tours of its Deer Island Wastewater Treatment Plant on Tuesdays and Fridays from April through November. All tours begin at 9:30 a.m. and are open to adults and kids in grades 7+. But the treatment facility isn’t the only attraction at Deer Island. With 60 acres of natural open space, Deer Island offers plenty to do for the entire family, including five miles of public walkways and trails for strolling, jogging, sightseeing, picnicking, fishing, and cycling. There are ten landscaped overlooks with sweeping views of the Boston skyline and islands, handicapped accessible paths, and low impact development (LID) features including low-maintenance, native plant species. The public access area is open year-round, from sunrise to sunset. https://www.mwra.com/03sewer/html/sewdi_access.htm

Waterworks Museum, Boston, MA
Waterworks Museum, Boston, MA

2. Waterworks Museum, Boston, MA

The Waterworks Museum is located on the site of the original Chestnut Hill reservoir and pumping station and provides regional information on clean water, health, engineers, and architecture. In addition to providing the history of waterworks in the City of Boston, the museum’s Great Engines Hall houses three historic, steam-powered pumping engines, and walking tours of the reservoir itself are available. The architecturally breathtaking museum is open Wednesday – Sunday from 11am-4pm year-round, with extended “Waterworks Wednesday” hours until 9pm from April through November. Waterworks Wednesdays feature authors, concerts, and guest speakers in addition to regular tours and learning opportunities. https://waterworksmuseum.org

Ben & Jerry's "Chunkinator" converts ice cream waste into energy
Ben & Jerry’s “Chunkinator” converts ice cream waste into energy

3. Ben & Jerry’s, Waterbury, VT

From its humble beginnings in a warehouse in Burlington, VT, Ben & Jerry’s has grown to a highly successful global corporation. And while the company has exponentially increased in both size and reach, it has remained loyal to its local roots. So when it was determined that the waste created in their Waterbury, Vermont location would overload the local wastewater treatment facility, they instead decided to funnel it to two of their local dairies where it is processed in a methane digester along with other farm waste. The result? Enough biomass energy to power the farms. Unfortunately, tours of the methane digester are not available. But that’s OK, because Ben & Jerry’s offers tours of its ice cream manufacturing facility, and these tours include education on the dairy waste – as well as ice cream samples. https://www.benjerry.com/about-us/factory-tours

BONUS: Building on their commitment to green energy, Ben & Jerry’s is the first ice cream company in the world to power one of its manufacturing plants using its own waste. Located in Hellendoorn, Netherlands, the “Chunkinator” is a BIOPAQ®AFR Biodigester containing over 24 billion natural micro-organisms that turn the plant’s own ice cream waste and wastewater into biogas that fuels the plant. To date, the brightly-painted Chunkinator has produced enough power to make over 16 million pints of Ben & Jerry’s ice cream. So if you happen to be in the Netherlands this summer, be sure to swing by to check it out! https://brightfuture.unilever.com/stories/423955/THE-CHUNKINATOR–Turning-ice-cream-into-energy.aspx

Maine's stunning Sebago Lake offers something for everyone
Maine’s stunning Sebago Lake offers something for everyone

4. Sebago Lake Water Treatment Facility, Standish, ME

Maine’s Sebago Lake Region is a popular summer destination that offers camping, fishing, boating, hiking, shopping, dining, live music, theatre, and much more, and families travel from all over the country to enjoy the region’s pristine, natural beauty. While you are there, you can add a little education into the family trip by visiting the Portland Water District’s Sebago Lake Water Treatment Facility. Tours are available on the first and third Thursdays of each month, beginning at 9:30am and lasting approximately two hours, and include both the facility and the lab. Due to the technical, complex nature presented, tours are recommended for high school age and older. Located on a 10-acre site in Standish, Maine, the state-of-the-art facility utilizes screening, ozonation, UV light treatment, chloramination, fluoridation, and corrosion control. https://www.pwd.org/tours

After visiting the Stamford Water Pollution Control Authority, be sure to stop by beautiful Cove Island Park
After visiting the Stamford Water Pollution Control Authority, be sure to stop by beautiful Cove Island Park

5. Stamford Water Pollution Control Authority (WCPA), Stamford, CT

The Stamford Water Pollution Control Facility processes wastewater from Stamford and Darien, CT and discharges the treated water into the Stamford Harbor. The site has been treating wastewater since 1900, with the first plant being built in 1943. Upgraded in 1976 and again in 2006, the facility is manned 24/7/365. In response to multiple requests for tours, WPCA began offering regular public tours in 2013. Held on the second Friday of each month at 12:30pm (weather permitting), the tour includes classroom education on the wastewater treatment process followed by a walking tour of the plant to see it in full operation. Total tour time is approximately one and a half hours. In addition, comprehensive student or group educational tours for all ages can be scheduled in advance for Monday through Friday between the hours of 8am and 3pm. https://www.stamfordwpca.org/public-outreach.aspx

BONUS: While visiting Stamford, families can also visit Cove Island Park, a beautiful 83-acre beach and park on Long Island Sound that offers plenty of space for walking, biking, picnicking, or swimming, or they can even catch a ferry over to New York City.

Summer in New England is simply perfect for day tripping, and the education provided by a water or wastewater treatment plant tour is invaluable. So check out one (or more) of these five water and wastewater field trips, and let us know what you think. Happy summer!

Dry Cleaners, Solvents, and Health, Oh My

Dry cleaning can be a dirty business.

dry_cleaner_shirtsA staple of American corporate and family life for decades, dry cleaning poses environmental and health concerns due to the chemicals used in the dry cleaning process when not handled properly. Since the 1960’s, the majority of dry cleaners have utilized perchloroethylene, or perc, for their operations. Perc, which is also used to degrease metal machinery and in the manufacture of consumer products, is a known environmental and health hazard. While improved operational standards and modernized equipment have reduced impacts to soil and groundwater, there is still the risk of accidental spills, leaks, and contamination.

Human risks include non-cancerous effects such as kidney, liver, neurological, immune, and reproductive system damage, and risk increases proportionally to the amount and duration of exposure. High levels of brief perc exposure often produce symptoms such as dizziness, fatigue, headaches, confusion, nausea, and skin, lung, eye, and mucous membrane irritation, while long-term exposure can cause more serious problems. After laboratory testing of rats and mice as well as studies of dry cleaning industry workers, EPA has concluded that perc is a likely human carcinogen, and has included it as part of a category of carcinogenic volatile organic compounds (VOCs). It is important to note, however, that there has been no indication of increased cancer risk from simply wearing dry cleaned clothing.

perc_contamination
Tata & Howard tests for perc contamination

Perc can enter the air, water, and ground during the cleaning, purification, and waste disposal phases of dry cleaning. Perc is released into the air through windows and vents, and, after a few weeks, breaks down into toxic and ozone-destroying chemicals. Perc that enters the ground through spills and leaks is highly toxic to plants, and, because perc does not bind well to soil, it travels very quickly into surface water, groundwater, and drinking water supplies. Even the smallest amount of perc can contaminate a large volume of water and be toxic to marine life, and EPA has set a limit on the amount of perc that is allowed to be in drinking water due to its toxicity. In addition to being detected in air, soil, and water, perc has also been found in food and breast milk. In fact, the dangers of perc are so plainly evident that, in 2007, the state of California passed legislation requiring the total phase-out of perc by 2023. In response to this legislation, the number of statewide traditional dry cleaners has dropped from 4,000 to less than 2,000 while the number of chemical-free dry cleaners, dubbed “wet cleaners,” has tripled.

Unfortunately, studies have indicated that 75% of operational dry cleaning establishments as well as countless former dry cleaning sites are contaminated. Costs to mitigate contaminated sites can reach hundreds of thousands of dollars or more, and many dry cleaners have simply been unable to afford the cost of cleanup. In an effort to assist dry cleaning business owners with these significant costs, 13 states have implemented programs to help with the cost of cleanup, and many more are considering such programs.

Established in 1998, the State Coalition for Remediation of Drycleaners (SCRD) is supported by the U.S. EPA Office of Superfund Remediation and Technology Innovation and is comprised of representatives of states with dry cleaner remediation programs in place. The funding programs are as follows:states_dry_cleaner_funding

  • Alabama Drycleaning Environmental Response Trust Fund (DERTF)
  • Connecticut Drycleaning Establishment Remediation Program
  • Florida Drycleaning Solvent Cleanup Program
  • Illinois Drycleaners Environmental Response Trust Fund
  • Kansas Drycleaning Program
  • Minnesota Pollution Control Agency Drycleaner Fund
  • Missouri Drycleaner Environmental Response Trust (DERT) Fund
  • North Carolina Dry-Cleaning Solvent Cleanup Act Program
  • Oregon Dry Cleaner Program
  • South Carolina Department of Health and Environmental Control: Drycleaning Restoration & Technical Assistance Section
  • Tennessee Drycleaner Environmental Response Program
  • Texas Dry Cleaning Remediation Program
  • Wisconsin Department of Natural Resources Dry Cleaning Environmental Response Program

States without specific dry cleaner programs may participate in SCRD as “Represented States” if they have active remediation programs under other authorities. Currently, Alaska, California, Delaware, Maryland, New York, New Jersey, and Virginia are SCRD Represented States. In addition to these states, several others, including Massachusetts, are considering similar legislation. More information on these programs and resources can be found here.

With the increased burden of toxins on our environment, and with limited funding for remediation of dry cleaner sites, finding the most cost-effective and efficient means of mitigating site contamination is paramount. This includes second opinions, alternative mitigation techniques, and, in instances of pre-existing contamination, litigation. In the end, the most important factor is improving our health and the environment in which we live by reducing or eliminating toxic chemicals from the ground, water, and air. California may just have the right idea.