Godfrey Brook Water Treatment Plant

Today’s volume and demand for daily water use may have changed since the town incorporated in 1881, but one goal remains constant to this day: safe water.

Team T&H continues to deliver safe, potable water through engineering excellence of precision, collaboration, feedback, and commitment between all team members, water department operators, and project managers. The Godfrey Brook WTP project scope involves construction administration and resident project representative services. Process elements of the project include biological iron and manganese pressure filters, a packed tower aerator, and chemical addition for the purpose of pH adjustment, corrosion control, and disinfection.  The new WTP includes a clearwell to achieve 4-Log inactivation of viruses prior to the distribution system. The WTP also includes HVAC, plumbing, electrical, and advanced SCADA systems for monitoring and control of the new treatment plant and the wells. Site work includes new raw and finished water mains, stormwater controls in the form of a sub-grade stormwater infiltration system, and residuals storage tanks for solids handling after backwashing the biological filters, and electrical including a new electrical standby generator. The project also includes site upgrades to the wells and access road, including an RCP culvert replacement to improve drainage of Godfrey Brook (a tributary stream into the Charles River), submersible well pumps and motors for the seven wells, and a precast concrete raw water metering vault for flow control. Currently, the biological filters are in the acclimation phase, the final step prior to a performance test to confirm effectiveness of removing iron and manganese.


Located to the left of the Godfrey Brook WTP’s exterior stands a packed tower aerator (shown above). The tower aerator removes carbon dioxide to increase pH in a more cost effective manner than chemical addition, and adds dissolved oxygen before the biological manganese filters, which is critical to biological filtration.

Biological manganese filters (above) come after the packed tower aerator for efficient removal of manganese. Biological iron filter is upstream of the packed tower to optimize the performance of all downstream processes.

The project included a culvert reconstruction to replace a damaged pipe. Culverts are trench-like constructs designed to allow free-flowing water beneath a road or railway, whether stormwater or a stream. Pictured is the finished culvert over Godfrey Brook, a tributary to the Charles River. 

T&H team members Matt O’Dowd, Juliette Burcham, Mitch Garon, and Barry Pociask review the electrical connection for the disconnect of the submersible well pump for well 1A. The Godfrey Brook Wellfield features seven total gravel packed wells: five rehabilitated and two newly installed.

The newly installed chemical feed system includes skid-mounted chemical metering pumps used for potassium hydroxide; here, chemical addition occurs for pH adjustment, along with the addition of sodium hypochlorite for disinfection and zinc orthophosphate for corrosion control prior to entering the water distribution system. 

Maine Water – Hydraulic Modeling & Fire Flow Analysis

Tata & Howard completed the Water Distribution System Comprehensive System Facility Plan for the Maine Water Company – Biddeford/Saco Division in 2013. This plan included updating and verifying the system’s hydraulic model and was utilized to develop distribution system recommendations for existing and future demand conditions.  Prioritized recommendations were developed for future implementation. The recommendations included distribution system operation and maintenance practices and water main improvements to strengthen transmission capabilities, promote looping and mitigate fire flow deficiencies.

Based on Tata & Howard’s knowledge and experience with the Maine Water hydraulic model, and the regional increase in residential development, T&H has recently been retained to provide hydraulic modeling and fire flow analysis for several proposed subdivisions or areas of critical concern including:

  • Sumter Landing – Old Orchard Beach, ME
  • West Saco Development – Saco, ME
  • Portland Avenue – Old Orchard Beach, ME
  • Breakwater Retirement Community – Rockland, ME

Another task requested by Maine Water was identified based on historic concerns for fire flows in the system’s low service area in Biddeford, ME.  Tata & Howard produced model iterations to identify the most appropriate location for a pressure reducing valve (PRV) vault from the high service area to allow additional flow in case of a fire.  Several locations were identified and modeled with the Pike Street boundary location determined to be the most appropriate from a constructability standpoint.  Subsequently, Maine Water negotiated a design contract to prepare bid documents for the PRV structure and appurtenances.

Finally, due to historic water quality concerns in the Pine Point area of Saco, ME, Maine Water retained Tata & Howard to run an Extended Period Simulation (EPS) for the Pine Point service area, and in particular, the Pine Point Storage Tank.  During low demands in the off-season (winter) months, the Pine Point tank SCADA historically had indicated no changes in level.  The EPS was developed using systemwide data and historic demands.  Alternatives were evaluated including transmission line modifications/replacements, taking the tank off-line during the off-season, and evaluating a booster pump station to force cycling of the tank.  Based on the results as well as factoring in operation and maintenance costs associated with the alternatives, design of a booster pump station was recommended.

 

Capital Improvements and Asset Management Plan, Gardner, MA

Tata & Howard prepared a Capital Improvements and Asset Management Plan (CIP) for the existing water, wastewater, and stormwater systems. The purpose of the CIP is to develop a complete inventory of all assets with replacement costs and useful life to assist the DPW in identifying areas in need of rehabilitation, repair, or replacement and prioritize improvements to make the most efficient use of the DPW’s budget.

The CIP was divided into three parts, water, wastewater, and stormwater systems. Buried and above ground infrastructure was evaluated for the water and wastewater systems and the stormwater evaluation included drainage pipes and structures. The stormwater asset evaluation including a field inspection of every outfall. The outfalls were mapped and a condition assessment performed. Water and wastewater above ground infrastructure included all supply, treatment, pumping, and storage components. Equipment, including vehicles, lawn mowers, and construction equipment was not included in the inventory.

As part of the water and wastewater pipe asset management evaluation, each segment of pipe was evaluated based on material, age, diameter, soil conditions, break history, and system specific concerns such as static pressure, potential water hammer, infiltration and inflow (I/I) concerns, and known operation and maintenance issues.  The stormwater outfalls were evaluated based on condition, catchment size, pipe size and material, size compromised and soil conditions.

The asset management plan for above ground infrastructure included an inventory and evaluation of all above ground facilities, including the water supplies, water and wastewater treatment facilities, pump stations, and storage tanks. The evaluation was used to develop a prioritized list of assets and a replacement schedule. The DPW now has a working database that can be updated as new information becomes available and can be reviewed when reviewing selection of yearly capital projects. Also, by reviewing the water, wastewater, and stormwater system together, the study can be used to make more efficient use of funds by potentially addressing water, wastewater and stormwater needs together on a street.

New Hampton Road Water Main Project

Tata & Howard completed design, funding, and construction phase services in the City of Franklin, NH for the $3.5M New Hampton Road Water Main Project. The new 16-inch and 12-inch ductile iron water mains replaced a 1940s era unlined cast iron water main (approximately 14,000 linear feet) with a history of main breaks and extends over three miles from the Babbitt Road Booster Station to the Sanbornton Wellfield.

The water main was identified as a priority in the 2016 Capital Efficiency Plan prepared by Tata & Howard and will provide improved water quality, distribution pressure, and fire protection.

Tata & Howard assisted the City with maximizing the NHDES SRF Loan with the City’s paving program funds to fully reconstruct 9,000 linear feet of New Hampton Road as part of the project.

Willis Road Wastewater Pumping Station, Gardner, MA

Tata & Howard was contracted to provide construction administration and part-time resident project representative services for the construction of upgrades to the Willis Road pump station.

The Willis Road Pump Station in Gardner, MA is a wastewater pumping station originally constructed in 1983. The pumping station was designed to handle a Total Maximum Daily Flow of 625 gallons per minute (gpm) or 900,000 gallons per day (gpd). The station pumps all the wastewater collected into the collection system through approximately 1,050 feet of 6-inch ductile iron force main.

The wastewater pumping station improvement project consisted of replacement of the station’s two 270 gpm centifugal pumps and motors, new control panels, new emergency generator, and upgrade of the existing pump building at a cost of $775,000.

 

 

 

East Mountain Road Water Storage Tank, Westfield, MA

Tata & Howard was contracted to provide design, bidding services, construction administration, and resident observation for the new water storage tank on East Mountain Road in Westfield, MA. The project included subconsultant work for the development of a survey, borings work, geotechnical evaluation and report, and environmental services to prepare a Habitat Assessment and MESA Checklist.

The design phase of the project consisted of the following:

  • Development of a site plan showing the proposed 2.1 MG precast, pre-stressed, wire-wound concrete tank location
  • New 16-inch diameter water main
  • Removal of the existing 16-inch AC water main
  • Access road improvements.

The new tank and access road required a Stormwater Management Permit to be filed with the City Engineering Department. Permits were filed with MassDEP, FAA, and MESA.

The construction administration phase consisted of the following:

  • Attending progress meetings with the client
  • Providing consultation on construction matters
  • Contracting with a qualified biologist to develop and supervise implementation of the Rare Vertebrate Protection Plan
  • Review and approval of shop drawings, schedules, and other data
  • Final observations of project
  • Finished set of record drawings

The resident project representative phase included the services of a part-time Resident Project Representative at the site to assist in the observation of the work.

The precast concrete tank, constructed by DN Tanks, is made of multiple concrete panels that were cast on site and lifted into place by a crane.

 

The new 2.1 mg tank will replace the city’s original 2.7 mg tank and is now online.

 

Auburn, MA Water Storage Tank

Tata & Howard was contracted to provide Design, Construction Administration, and Resident Project Representation services for the construction of the Prospect Street Water Storage Tank in Auburn, MA.

The project consists of the construction of a 1.0-million-gallon capacity glass-fused-to-steel water storage tank with associated piping and appurtenances, electrical work, a tank mixing system, and site work.  Other work included the decommissioning and demolition of the pre-existing 500,000-gallon capacity welded steel water storage tank at the site.

 

 

 

Maher Water Treatment Plant – Groundbreaking Ceremony

On Wednesday, August 7, 2019, the Hyannis Water System and officials from MassDEP held a ceremonial groundbreaking for construction of the new Maher Water Treatment Plant designed by Tata & Howard, Inc.

The $12 million water system upgrade, funded by the MassDEP SRF program, will enable the Town to meet new and stricter federal and state regulations for emerging contaminants. The new plant will treat elevated levels of Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), 1,4-Dioxane, iron, and manganese in the three drinking water production wells at the existing facility.

The water filtration building at the Maher Water Treatment Plant has a design capacity of 1,500 gallons per minute. Using granular activated carbon filtration, the successful removal of PFOS/PFOA will be obtained. Advanced oxidation with peroxide and ultraviolent (UV) light will treat 1,4-Dioxane. Lastly, greensand pressure filtration will not only remove the iron and manganese, but also extend the useful life of the granular activated carbon.

Tata & Howard has been instrumental in the evolution of this project. In December of 2016, Tata & Howard provided a conceptual design report to Barnstable’s Department of Public Works. A pilot test report was submitted in early 2018 and design began shortly thereafter.

The Hyannis Water System currently consists of four water treatment facilities, four storage tanks, 12 well pumping stations, and a 107-mile distribution system. The water system provides drinking water services to approximately 18,000 residents through 7,249 metered service connections to residential and commercial properties.

Waterline Industries Corporation of Seabrook, NH constructed the filtration building, and Tata & Howard provided construction administration and resident observation. The facility was operational in October 2020.

Newton, MA – Lead Service Replacement Program

Tata & Howard was contracted to provide design, construction administration and resident project representation for the replacement of 588 lead services in Newton, MA. Although the water that services the City is not corrosive, replacing lead services is a cautious and preventative measure to avoid lead from potentially leaching into tap water via the service connection which is located from the water main to the meter.

Lead service replacement program in Newton, MA. Excavator and men.

Lead pipes are more likely to be found in older cities and homes built before 1986. As such, the affected lead services in Newton were installed between 1875 and 1915. Of the 588 total services;

  • 318 were full-service replacements (from water main to meter)
  • 266 were partial-service replacements (from curb stop to meter)
  • 4 were street only replacements (from water main to curb stop)

Prior to the construction phase of this project, Newton residents were notified about the City’s Lead Service Replacement Program (LSRP). Although not required, those wishing to participate in the program were able to take advantage of a ten-year, no interest payment plan through the City.
Under the LSRP, the City replaced, at its own expense, the portion of the water service pipe which was within the public way from the street line in front of the homeowner’s property, to the City water main. The homeowner then had the option to replace the portion of the water service pipe that ran from their meter to the property line.

Lead service replacement program in Newton, MA. Newton home with construction cones.

Tata & Howard scheduled construction and coordinated with the residents who elected to participate in the LSRP. Crews from C.J.P & Sons Construction worked to excavate the properties and remove/replace the water service pipes. In most cases, limited excavation of homeowner property was needed.

When the project reached completion, 427 total services had been replaced.

Lead service replacement program in Newton, MA. Excavator and men. Construction worker replacing pipes.

(De)leading the Way – Marlborough, MA

The City of Marlborough, MA (home of T&H headquarters) contracted Tata & Howard for the design, pre-construction services, construction administration and resident observation of approximately 1,200 lead water service connections.
Until 1944, lead was widely used in service lines and is quite common in many of the older cities and towns in Massachusetts.

Lead pipes currently placed between the streets and homes of identified Marlborough residents will be replaced with copper pipes in five phases – each phase consisting of approximately 250 homes.

Tata & Howard will be involved in each phase, reviewing tie cards, attending field surveys to determine what each service placement will entail, and advising contractors on the quantity of pipes to be installed in each location.

Although lead is known to be  a major health risk to children and pregnant women, the supplier of Marlborough’s water, Massachusetts Water Resources Authority (MWRA), treats all water to reduce lead from getting into drinking water.