PFAS Mitigation, Shrewsbury, MA

A PFAS Journey to Determine Effective Management and Treatment Options

Tata & Howard is working with the Town of Shrewsbury, MA to address perfluoroalkyl and polyfluoroalkyl substances (PFAS) in the groundwater. The Town of Shrewsbury water system serves a population of approximately 38,300. The system consists of about 200 miles of main, nine active groundwater wells from three well sites, three pressure zones, six storage tanks, and one water treatment plant. The 7.0 million gallon per day (mgd) Home Farm Water Treatment Facility utilizes biological treatment for removal of manganese.

In 2020, Shrewsbury detected PFAS in the wells. Sampling has indicated that PFAS is present in most of the wells operated by the Town but under the maximum contaminant level (MCL) of 20 nanograms per liter (ng/L) for PFAS6 as regulated by the Massachusetts Department of Environmental Protection (MassDEP) which includes the sum of concentrations for PFOS, PFOA, PFHxS, PFNA, PFHpA, and PFDA. Raw water from one well site, the Sewell Well, has been consistently higher than 20 ng/L; but the finished water from all wells after treatment at the Home Farm Water Treatment Plant has been in compliance and consistently less than 16 ng/L. Most of the PFAS is in the form of PFOA and PFOS which are the two compounds for which the EPA has developed a proposed MCL. The PFOA indicated by the green bar in Table 1 is higher than the proposed Federal MCL of 4 ng/L.

Currently, the Town has been managing the sources to improve water quality and stay under the current MCL of 20 ng/L for PFAS6. A mass balance is utilized to estimate finished water PFAS concentrations based on updated sample results and changes in the operation of the sources. Tata & Howard created the base tool which can be used to see how changes to PFAS levels or flow rates can affect the finished water concentration.

Table 2 represents existing conditions. The numbers used for PFAS are the highest results from each individual well observed in a year of sampling data, showing the finished water level is about 16 ng/L.  As long as the PFAS concentrations in the wells remain consistent, the Town will remain in compliance. If sample results change and they see an increase in PFAS concentration at Sewell, the Town will make adjustments using the mass balance to manage the sources to remain in compliance.

 The Town cannot manage sources like this indefinitely. They decided to move forward with reviewing PFAS treatment options and pilot testing to determine the best course of action if/when treatment is required.

Tata & Howard and the Town considered three treatment options. The first option is anion exchange, which uses a resin with positively charged ions. These are typically single use resins and require one to three minutes of empty bed contact time. The next option is Granular Activate Carbon (GAC) which uses adsorption. This media can be made from different types of carbon sources that can be recycled through thermal reactivations and requires a ten minute empty bed contact time. There are limitations with GAC on some of the short chain PFAS. The third type is novel media, which includes other types of media that do not fall into the first two categories. The novel media piloted uses an adsorption process that is classified as a single use resin and has a two to three minute empty bed contact time.

Pilot System

Shrewsbury’s pilot testing utilized three anion exchange resins from two suppliers (one of which was regenerative), a coal-based GAC, and a novel media. The novel media selected works like GAC since it is not as sensitive to chlorine and chlorides, which can impact the effectiveness of anion exchange resins.

The GAC pilot test utilized two 6-inch columns in series rather than one very tall column to give more flexibility for installation and backwashing. A total of 10 gallons of media were installed with a loading rate of 7.5 gal/ft2 and an empty bed contact time of approximately ten minutes. The anion exchange and novel medias each utilized one 6-inch column with five gallons of media installed, a loading rate of 11.25 gal/ft2, and an empty bed contact time of approximately two minutes.

The water source was a tap on the effluent line from the existing filters using finished water that had been treated for manganese removal but not any of the chemical additions of KOH, phosphate, chlorine, and fluoride. There were control valves so the water only came through the unit when the treatment plant was online, which is typically more than 20 hours per day.

There was an initial baseline water quality sampling event at the start, at the end of week 20, and at the end of piloting. PFAS samples were taken day one, day seven, and then monthly for the duration of the pilot. Samples were taken from the 25% sample tap until breakthrough (50% of the raw water PFAS levels, so between 6 and 7 ppt), then at the 50% tap.

Table 3 shows the result from the different taps at the end of the pilot.  The anion exchange results are from the best performing anion exchange resin. GAC was first detected in week 8 with breakthrough in the 25% tap in week 16 and the 50% tap in week 44. There was a detected amount in the final sample tap in week 64, which was the final week of the testing.

Anion exchange had the longest time to first detect but the 25% breakthrough for all anion exchange and novel media were all within a sample event or so of each other and occurred between weeks 44 and 52. The novel media had breakthrough of the 50% tap at week 60 and was detected in the 100% tap at the final week while the anion exchange was ND in the 100% tap at the end of the pilot.

Table 4 is a summary as to what the permanent filter system may look like. The filters are similar in size but the number of recommended filters differs for each resin. The overall building footprint is similar as well. The anion exchange did perform slightly better than the novel media, however, the overall PFAS removal results over the duration of the pilot was similar. Because of this, construction costs, long term media replacement costs, and operational considerations were included as part of the media selection process.

The Town has not yet made a final decision on media type, but it appears that the novel media may be the best fit for the Town’s needs.  Specifically, the novel media allows for some backwashing and chlorination, reducing the potential of biofilm buildup and potential capacity loss due to increased headloss through the media. Additionally, the novel media has a smaller footprint in comparison to GAC.  The Town of Shrewsbury’s current PFAS levels do contain mostly PFOS and PFOA at concentrations higher than the proposed Federal regulations for those two compounds. Also, based on reviewing the data of the PFAS6 compounds, PFOA was the compound first detected for all media; also, the majority of the detected PFAS6 concentrations in the effluent throughout the pilot were PFOA.

One additional challenge moving forward is the design of the facility so the water goes through the manganese treatment first, the new PFAS treatment next, and finally utilizes the existing clearwell for chlorine contact, with finished water pumping into the system, all while keeping the existing treatment online during construction and start up.  Tata & Howard is currently completing a preliminary design to better estimate costs before completing the final design, permitting, and ultimately construction.

Water Treatment Plant, Amherst, MA

Tata & Howard contracted with the Town of Amherst for design, permitting, and bidding of the 1.5 million gallon per day (MGD) Centennial Water Treatment Plant, to treat surface water from the Pelham Reservoir System. The existing Centennial WTP, located in the Town of Pelham but supplying the Amherst Public Water System, has a history of issues with turbidity, color, and disinfection byproducts in the form of total trihalomethanes (TTHM) and haloacetic acids (HAA5) because of high levels of organics in the Pelham Reservoir System. Due to the age and condition of the existing WTP, the filters which were the primary treatment process at the existing WTP were no longer effective at removing organics, leading to a decrease in finished water quality and total WTP capacity.  The existing Centennial WTP has been offline since 2018 due to water quality, as well as infrastructure concerns related to a lightning strike which impacted pumping equipment and communications at the Centennial Water Treatment Plant’s raw water pump station.

Based on the results of the pilot study performed by the Town of Amherst, Tata & Howard completed design of the new Centennial Water Treatment Plant including dissolved air flotation (DAF) clarifiers and granular activated carbon (GAC) filtration for treatment of organics, color, turbidity, and low levels of iron and manganese. The DAF system includes polyaluminaum chloride for coagulation, two rapid mix chambers, and three package DAF units which each include two high rate flocculation chambers, two low-rate flocculation chambers, a saturation tank, effluent collection system, discharge weir, mechanical skimmers and beach, and associated appurtenances and controls. Three dual media filter chambers with a silica sand/course garnet base layer and GAC above are located downstream of the DAF units, prior to final chemical addition.

Additional chemical feed includes a gaseous chlorine system for 4-log inactivation of viruses, gaseous ammonia for chloramine formation, sodium fluoride for dental health, and sodium hydroxide for pH adjustment and corrosion control. The new facility also includes an advanced Supervisory Control and Data Acquisition (SCADA) system for automated control of the water treatment plant. Operators for the Town of Amherst will be able to remotely monitor and control operation of the Centennial WTP, through a recently extended town fiber optic cable network.

The design of the Centennial WTP included provisions to maintain the Amherst water distribution system, as even with the Centennial WTP offline, the clearwell of the existing facility also serves to maintain pressure in a small portion of the water distribution system between the Centennial WTP and a booster pump station. The Centennial WTP feeds the majority of the water system (excluding the portion between the WTP and the booster pump station) by gravity. Since the existing WTP including the clearwell will be demolished prior to construction of the new WTP, design and construction of the new WTP will include a temporary water storage tank to maintain pressure and keep all connections active in the high service area of the Amherst Public Water System.

Permitting for this project included a BRP WS 24 New Treatment Plant application with MassDEP, Site Plan Review with the Pelham Zoning Board of Appeals, and a Request for Determination of Applicability (RDA) with Pelham Conservation Commission.

The Centennial Water Treatment Plant was recently bid and awarded to R.H. White Construction Co. of Auburn, MA for a contract amount of $18,876,000.  This project received funding though the Drinking Water State Revolving Fund program, and construction is expected to be completed by the summer of 2025.

Godfrey Brook Water Treatment Plant

Today’s volume and demand for daily water use may have changed since the town incorporated in 1881, but one goal remains constant to this day: safe water.

Team T&H continues to deliver safe, potable water through engineering excellence of precision, collaboration, feedback, and commitment between all team members, water department operators, and project managers. The Godfrey Brook WTP project scope involves construction administration and resident project representative services. Process elements of the project include biological iron and manganese pressure filters, a packed tower aerator, and chemical addition for the purpose of pH adjustment, corrosion control, and disinfection.  The new WTP includes a clearwell to achieve 4-Log inactivation of viruses prior to the distribution system. The WTP also includes HVAC, plumbing, electrical, and advanced SCADA systems for monitoring and control of the new treatment plant and the wells. Site work includes new raw and finished water mains, stormwater controls in the form of a sub-grade stormwater infiltration system, and residuals storage tanks for solids handling after backwashing the biological filters, and electrical including a new electrical standby generator. The project also includes site upgrades to the wells and access road, including an RCP culvert replacement to improve drainage of Godfrey Brook (a tributary stream into the Charles River), submersible well pumps and motors for the seven wells, and a precast concrete raw water metering vault for flow control. Currently, the biological filters are in the acclimation phase, the final step prior to a performance test to confirm effectiveness of removing iron and manganese.


Located to the left of the Godfrey Brook WTP’s exterior stands a packed tower aerator (shown above). The tower aerator removes carbon dioxide to increase pH in a more cost effective manner than chemical addition, and adds dissolved oxygen before the biological manganese filters, which is critical to biological filtration.

Biological manganese filters (above) come after the packed tower aerator for efficient removal of manganese. Biological iron filter is upstream of the packed tower to optimize the performance of all downstream processes.

The project included a culvert reconstruction to replace a damaged pipe. Culverts are trench-like constructs designed to allow free-flowing water beneath a road or railway, whether stormwater or a stream. Pictured is the finished culvert over Godfrey Brook, a tributary to the Charles River. 

T&H team members Matt O’Dowd, Juliette Burcham, Mitch Garon, and Barry Pociask review the electrical connection for the disconnect of the submersible well pump for well 1A. The Godfrey Brook Wellfield features seven total gravel packed wells: five rehabilitated and two newly installed.

The newly installed chemical feed system includes skid-mounted chemical metering pumps used for potassium hydroxide; here, chemical addition occurs for pH adjustment, along with the addition of sodium hypochlorite for disinfection and zinc orthophosphate for corrosion control prior to entering the water distribution system. 

New Hampton Road Water Main Project

Tata & Howard completed design, funding, and construction phase services in the City of Franklin, NH for the $3.5M New Hampton Road Water Main Project. The new 16-inch and 12-inch ductile iron water mains replaced a 1940s era unlined cast iron water main (approximately 14,000 linear feet) with a history of main breaks and extends over three miles from the Babbitt Road Booster Station to the Sanbornton Wellfield.

The water main was identified as a priority in the 2016 Capital Efficiency Plan prepared by Tata & Howard and will provide improved water quality, distribution pressure, and fire protection.

Tata & Howard assisted the City with maximizing the NHDES SRF Loan with the City’s paving program funds to fully reconstruct 9,000 linear feet of New Hampton Road as part of the project.

Auburn, MA Water Storage Tank

Tata & Howard was contracted to provide Design, Construction Administration, and Resident Project Representation services for the construction of the Prospect Street Water Storage Tank in Auburn, MA.

The project consists of the construction of a 1.0-million-gallon capacity glass-fused-to-steel water storage tank with associated piping and appurtenances, electrical work, a tank mixing system, and site work.  Other work included the decommissioning and demolition of the pre-existing 500,000-gallon capacity welded steel water storage tank at the site.

 

 

 

Newton, MA – Lead Service Replacement Program

Tata & Howard was contracted to provide design, construction administration and resident project representation for the replacement of 588 lead services in Newton, MA. Although the water that services the City is not corrosive, replacing lead services is a cautious and preventative measure to avoid lead from potentially leaching into tap water via the service connection which is located from the water main to the meter.

Lead service replacement program in Newton, MA. Excavator and men.

Lead pipes are more likely to be found in older cities and homes built before 1986. As such, the affected lead services in Newton were installed between 1875 and 1915. Of the 588 total services;

  • 318 were full-service replacements (from water main to meter)
  • 266 were partial-service replacements (from curb stop to meter)
  • 4 were street only replacements (from water main to curb stop)

Prior to the construction phase of this project, Newton residents were notified about the City’s Lead Service Replacement Program (LSRP). Although not required, those wishing to participate in the program were able to take advantage of a ten-year, no interest payment plan through the City.
Under the LSRP, the City replaced, at its own expense, the portion of the water service pipe which was within the public way from the street line in front of the homeowner’s property, to the City water main. The homeowner then had the option to replace the portion of the water service pipe that ran from their meter to the property line.

Lead service replacement program in Newton, MA. Newton home with construction cones.

Tata & Howard scheduled construction and coordinated with the residents who elected to participate in the LSRP. Crews from C.J.P & Sons Construction worked to excavate the properties and remove/replace the water service pipes. In most cases, limited excavation of homeowner property was needed.

When the project reached completion, 427 total services had been replaced.

Lead service replacement program in Newton, MA. Excavator and men. Construction worker replacing pipes.

(De)leading the Way – Marlborough, MA

The City of Marlborough, MA (home of T&H headquarters) contracted Tata & Howard for the design, pre-construction services, construction administration and resident observation of approximately 1,200 lead water service connections.
Until 1944, lead was widely used in service lines and is quite common in many of the older cities and towns in Massachusetts.

Lead pipes currently placed between the streets and homes of identified Marlborough residents will be replaced with copper pipes in five phases – each phase consisting of approximately 250 homes.

Tata & Howard will be involved in each phase, reviewing tie cards, attending field surveys to determine what each service placement will entail, and advising contractors on the quantity of pipes to be installed in each location.

Although lead is known to be  a major health risk to children and pregnant women, the supplier of Marlborough’s water, Massachusetts Water Resources Authority (MWRA), treats all water to reduce lead from getting into drinking water.
   
   

Falmouth Main Street Water Main Construction

Tata & Howard was contracted to provide design, construction administration and resident observation for the installation of 18,000 linear feet (approximately 3.5 miles) of 16-inch ductile iron water main in Falmouth, MA. Water main replacement will be in Main Street and Route 28. That is, from the intersection of West Main Street and Locust Street, to the intersection of Teaticket Highway and Oxbow Road

New water main will be replacing the town’s 10-inch cast iron water pipes that were originally installed in 1898. Falmouth’s 121-year-old water infrastructure has stood strong for more than a century; however, it has become clear that it’s nearing the end of its useful life and approaching the age at which it needs to be replaced. Evidence of this can be seen in the three water main breaks that have occurred since August of 2018. In addition, the original water main is hydraulically deficient and needs to be up-sized to meet the increasing demands in the system.

Construction began at the beginning of April and continued up until Memorial Day of this year. Construction was limited to off season times due to the heavy tourist months in Cape Cod. Project completion was in the spring of 2021.


Meadow Walk Mixed-Use Wastewater Design / Engineering Services

Tata & Howard provided engineering services for final design and construction documents associated with the design of a wastewater treatment facility utilizing membrane bioreactor (MBR) technology for the 50-acre Meadow Walk development at 526-528 Boston Post Road in Sudbury, Massachusetts. The site is a former Raytheon engineering and R&D facility.

National Development / Avalon Bay mixed-use residential and retail development, Boston Post Road, Sudbury, MA.

Believing the site was well-suited for mixed-use residential and retail development, Sudbury selectmen and residents voted to approve zoning and development plans proposed by National Development and Avalon Bay. The site was in development for two years and is nearing completion. The project consists of several independent components, which collectively comprise a mixed-use development with new open space, retail, and restaurants as well as walkable access to adjacent retail, office, and other services along Boston Post Road. The project also included local roadway improvements, major upgrades to the streetscape and landscaping, wastewater treatment improvements, and improved water quality.

Tata & Howard was contacted initially to prepare studies of existing conditions and proposed modifications to enhance and then upgrade the wastewater facility and disposal area on the site. Additional out-of-scope changes included value engineered alternatives and additional design services. The existing wastewater treatment facility was over 25 years old and required increased discharge limits; conversion to an MBR system to achieve higher removal of BOD, TSS, TN, turbidity, and other wastewater constituents; additional treatment redundancy; upgrades to meet current Massachusetts Department of Environmental Protection (MassDEP) guidelines; increased groundwater recharge; odor control; replacement of old infrastructure with a new pump station, gravity lines, and force main; a change to mixed land/water use to result in wastewater generation that could be more efficiently treated at the new wastewater treatment facility; and a new leaching field.

Upgrades included infrastructure and a new leaching field.

Hemlocks Raw Water Pumping Station

Tata & Howard provided engineering services for design, bidding, construction administration, and resident observation to Aquarion Water Company for improvements to their existing Hemlocks Raw Water Pumping Station in Fairfield, CT. The project included refurbishing five 300 hp centrifugal pumps and motors, replacing the existing variable frequency drives (VFDs), installing new piping, check valves, and strainers for each pump.

Hemlocks Pumps
BEFORE improvements to the Hemlocks Pumping Station.

As this facility is a source of supply for Aquarion’s Main System, it needed to be kept operational throughout the construction. The sequence of work required a single pump to be taken off line; refurbished; reinstalled with new piping, VFD, and appurtenances; tested and placed back into service prior to the next pump being taken off line.

Hemlock Pumps
AFTER improvements to the Hemlocks Pumping Station.

Another important aspect of the project was to replace the existing strainers so that they were easier for the plant operators to clean as they get clogged with eels. To simplify maintenance, new stainless steel wye strainers with bottom access to the screens were installed on the suction side of each pump.