PFAS – Emerging Contaminants in Drinking Water

Health Advisory Guidelines for Per- and polyfluoroalkyl Substances Detected in Public Water Systems

The Massachusetts Department of Environmental Protection (MassDEP) announced in early June, and through the Office of Research and Standards (ORS), its recommendations on the Unregulated Contaminant Monitoring Rule 3 (UCMR 3) for emerging contaminants-specifically Perflourinated Alkyl Substances (PFAS).

PFAS or Per- and polyfluoroalkyl substances are a group of man-made compounds that include perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perffluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perflouroheptanoic acid (PFHpA), and perfluorobutane sulfonate (PFBS).

US map of PFASAccording the Environmental Protection Agency (EPA), all these UCMR 3 PFAS compounds have been detected in public water supplies across the US. Since PFAS are considered emerging contaminants, there are currently no established regulatory limits for levels in drinking water. However, in 2016, the EPA set Health Advisory levels (HA) of 0.07 micrograms per liter (µg/L) or 70 parts per trillion (ppt) for the combined concentrations of two PFAS compounds, PFOS and PFOA.

MassDEP’s ORS established drinking water guidelines that follows the EPA’s recommendations for health advisory levels at 70 ppt, which applies to the sum total of five PFAS chemicals – PFOS, PFOA, PFNA, PFHXS, and PFHpA.  And, if the level of contamination poses unacceptable health risks to its customers, Public Water Systems (PWS) must take action to achieve safe levels. They also must provide public notice.

The EPA and MassDEP’s recommended guidelines for PFAS include:

  • Public Water Suppliers take immediate action to reduce levels of the five PFAS to be below 70 ppt for all consumers.
  • Susceptible health-risk groups (pregnant women, infants, and nursing mothers) should stop consuming water when the level is above 70 ppt.
  • Public Water Systems must provide a public Health Advisory notice.

Water testingThe EPA also recommends that treatment be implemented for all five PFAS when one or more of these compounds are present.

Although, PFAS are no longer manufactured in the United States, PFAS are still produced internationally and can be imported in to the country1.  PFAS have been in use since the 1940’s and are persistent chemicals that don’t breakdown, accumulate over time in the environment and in the human body.  Evidence shows that prolonged exposure PFAS can have adverse effects on human health and the ecology.

PFAS can be found in:

  • Agricultural products grown in PFAS-contaminated soil or water, and/or handled with PFAS-containing equipment and materials.
  • Drinking water contaminated from chemical groundwater pollution from stormwater runoff near landfills, wastewater treatment plants, and firefighter training facilities2.
  • Household products, including nonstick products (e.g., Teflon), polishes, waxes, paints, cleaning products, and stain and water-repellent fabrics.
  • Firefighting foams2, which is a major source of groundwater contamination at airports and military bases where firefighting training occurs.
  • Industrial facilities that manufactured chrome plating, electronics, and oil recovery that use PFAS.
  • Environmental contamination where PFAS have built-up and persisted over time – including in fish, animals and humans.

While most states are relying on the EPA’s Health Advisory levels (including Massachusetts), some, such as Connecticut, Minnesota, New Jersey, Arizona, and Colorado have addressed other UCMR 3 PFAS pollutants as well.

Boy drinking waterMost research on the effects of PFAS on human health is based on animal studies. And, although there is no conclusive evidence that PFAS cause cancer, animal studies have shown there are possible links. However, PFAS ill-health effects are associated with changes in thyroid, kidney and liver function, as well as affects to the immune system.  These chemicals have also caused fetal development effects during pregnancy and low birth weights.

PFAS are found at low levels throughout our environment—in foods we consume and in household products we use daily. PFAS in drinking water at levels higher than the EPA’s recommendations does not necessarily mean health risks are likely. Routine showering and bathing are not considered significant sources of exposure. And, while it is nearly impossible to eliminate all exposure to these chemicals, the risk for adverse health effects would likely be of concern if an individual continuously consumed higher levels of PFAS than the guidelines established by the EPA’s Health Advisory.

MassDEP is continuing its research and testing for PFAS in Public Water Systems.  Large Public Drinking Water Systems have already been tested and sampling indicated that approximately 3% had levels of PFAS detected. MassDEP is currently working with smaller Public Water Systems to identify areas where PFAS may have been used or discharged to the environment.

As more information and regulations develop on this emerging contaminant, MassDEP will continue to communicate their findings. Tata & Howard is also available for any questions that may arise, as well as, assist with testing and recommend treatment options for our clients.

 

1 In 2006, the EPA and the PFA industry formed the PFOA Stewardship program to end the production of PFAs.

2 MassDEP in partnership with the Massachusetts Department of Fire Services (MassDFS), announced in May a take-back program to remove hazardous pre-2003 firefighting foam stockpiles and be neutralized. Manufacturers stopped making PFAS foam in 2002 and have since developed fluorine-free and more fluorine stable foams that are safer to the environment.

A DPW Director’s Guide to Improving Utilities with Limited Capital

dpw-directorWater systems today face a set of problems that are unique to this generation. While our nation’s buried infrastructure is crumbling beneath our feet as it reaches the end of its useful life, supplies are dwindling, budgets are shrinking, and federal and state funding is drying up. At the same time, regulatory requirements continue to increase as emerging contaminants are identified. Water systems often find themselves in the quandary of whether to upgrade treatment systems to comply with these new regulations or update assets that are long overdue for replacement or rehabilitation.

Savvy DPW directors recognize the need for thinking outside the box when it comes to water system management. Gone are the days of simply allocating annual budgets to the required maintenance of assets. Instead, careful planning, thoughtful operations, and superior efficiency are the new requirements for successful utility management, and can all be accomplished with limited capital investment.

Planning for the Future with Capital Efficiency Plans™

Asset management planning is critical to the health and maintenance of water utilities. Part of a successful asset management plan is the development of a planned, systematic approach that provides for the rehabilitation and replacement of assets over time, while also maintaining an acceptable level of service for existing assets. But how are utilities able to determine which assets should be prioritized? The answer is through a multi-faceted approach to asset management.

Our Capital Efficiency Plan™ (CEP) methodology is unique in that it combines the concepts of asset management, hydraulic modeling, and system criticality into a single comprehensive report that is entirely customized to the individual utility distribution system. The final report provides utilities with a database and Geographic Information System (GIS) representation for each pipe segment within their underground piping system, prioritizes water distribution system piping improvements, and provides estimated costs for water main replacement and rehabilitation. Because the CEP takes a highly structured, three-pronged approach, utilities can decisively prioritize those assets most in need of repair or replacement, and are able to justify the costs of those critical projects when preparing annual budgets.

Increasing Operational Efficiency with Business Practice Evaluations

water-operations-evaluationIn addition to addressing capital efficiency, water utilities of today must also address operational efficiency. Because water systems are required to do so much with so little, efficiency in all aspects of water system management is critical. Tata & Howard appreciates the unique set of challenges faced by water systems today, and we have experts on staff who understand the inner workings of a water utility – and how to improve them.

Our Business Practice Evaluation (BPE) was designed by James J. “Jim” Courchaine, Vice President and National Director of Business Practices, who has over 45 years of experience in every facet of water and wastewater management, operations, and maintenance. He is a certified Water Treatment and Distribution System Operator, Grade 4c (MA) and RAM-W (Risk Assessment Methodology for Water). He also taught courses at the University of Massachusetts, Lowell for ten years on water system operations. Jim does not approach utility operations from the perspective of an engineer; rather, he has deep experience in utility operations and management as an actual operator.

Our BPEs assess the health of a utility’s work practices by implementing a framework for a structured approach to managing, operating, and maintaining in a well-defined manner. The overall goal of the assessment process is more efficient and effective work practices, and the assessment includes documentation of current business practices, identification of opportunities for improvement, conducting interviews including a diagonal slice of the organization, and observation of work practices in the field. The BPE encourages utilities to operate as a for-profit business rather than as a public supplier, which results in more efficient, cost effective operational and managerial procedures — and an improved bottom line. Water systems that have conducted a BPE have found significant improvement in the operational efficiency of their utility.

Improving the Environment — and the Bottom Line — with Water Audits

water-meters-water-auditsBesides improving operational and capital efficiency, water systems of today must reduce non-revenue water. Non-revenue water is treated drinking water that has been pumped but is lost before it ever reaches the customer, either through real losses such as leaks, or through apparent losses such as theft or metering issues. In the United States, water utilities lose about 20% of their supply to non-revenue water. Non-revenue water not only affects the financial health of water systems, but also contributes to our nation’s decreasing water supply. In fact, the amount of water “lost” over the course of a year is enough to supply the entire State of California for that same year. Therefore, the AWWA recommends that every water system conduct an annual water audit using M36: Water Audits and Loss Control methodology to accurately account for real and apparent losses.

A water audit helps water systems identify the causes of water loss, as well as the true costs of this loss. An effective water audit will help a water system reduce water loss, thus recapturing lost revenue. Water loss typically comes as a result of aging, and deteriorating infrastructure, particularly in the northeast, as well as policies and procedures that lead to inaccurate accounting of water use. Water audits are the most cost-effective and efficient solution to increasing demand, and, like BPEs, water audits usually pay for themselves in less than a year.

In Conclusion

Today’s DPW Directors are faced with the burden of increasing regulations along with decreasing supply, budgets, and funding. For water systems to continue to effectively function, they must remain profitable, which means they must implement efficiencies on all fronts. CEPs, BPEs, and water audits are all low-cost methodologies that improve efficiency with an extremely short return on investment. In addition, water systems that proactively plan for the future will more easily weather the threats of climate change and population growth. Capital and operational efficiency combined with identifying and addressing sources of non-revenue water will position water system to continue to provide safe, clean drinking water for future generations.

The Criticality of Energy Efficiency for Water and Wastewater Utilities

electricity meterMunicipal water and wastewater services require electricity, and lots of it. Drinking water and wastewater systems in the United States account for 3-4% of our nation’s total energy usage and add over 45 million tons of greenhouse gases to our environment each year. High energy costs for water and wastewater utilities are straining municipal budgets and creating unsustainable operating costs, and with prices already on the rise due to increasing regulations and demand, passing energy costs on to consumers simply isn’t a viable option. Drinking water and wastewater treatment plants account for 30-40% of the total energy consumed by municipal governments, making them the single largest energy consumers in the municipal sector. Add to that the fact that energy currently accounts for an average of 40% of operational costs for drinking water systems and is expected to increase to 60% within the next 15 years, and it becomes clear that energy efficiency for water and wastewater utilities is no longer a choice – it’s a necessity.

But it’s not all doom and gloom. Energy costs for water and wastewater utilities are indeed significant, but they also represent the largest controllable cost of providing water and wastewater services. Studies have estimated that 15-30% energy savings is readily achievable through cost-effective efficiency measures in water and wastewater plants, and that utilities can realize significant financial returns with a payback period from only a few months to about five years.

lightbulb water Very often, utilities can save substantially by increasing the efficiency of pumps and aeration equipment at water and wastewater treatment plants. In addition, operational changes such as proactively shifting energy usage away from peak demand times where electricity is most expensive, or generating electricity and heat from biogas, can greatly reduce energy usage. Water and wastewater utilities are not typically designed and operated with energy efficiency as a primary objective, as more pressing concerns such as regulatory requirements, capital expenditure, reliability, and securing funding typically take precedence. However, it is important not to overlook these systems when communities fund energy improvement projects, as significant energy and monetary savings can be realized through operational changes and capital improvement projects. And these savings make a big difference. Even a 10% energy reduction in our nation’s drinking water and wastewater systems would save about $400 million and five billion kWh annually, greatly reducing both the financial burden currently plaguing water and wastewater utilities as well as our impact on the environment.

But where to start? The first step towards making informed decisions that result in the highest return on investment (ROI) in the shortest amount of time is an energy audit. Since 2008, EPA has been actively working with water and wastewater utilities to help them become more efficient and to reduce operational costs, and one of the key steps in their process is an energy audit. A quality water and/or wastewater energy audit should focus on energy efficient equipment replacement, operational modifications, and process control that will lead to improved efficiency and cost savings with the shortest possible payback period, and includes processes such as conducting on-site observations, testing existing systems and equipment, monitoring power usage and costs, and developing strategies to limit demand charges.

Kachina, Arizona
Kachina, Arizona

As an example, Tata & Howard conducted an energy audit on the water production assets and distribution system of the Kachina Village Improvement District (KVID) in Arizona. During the course of the study, the well pumps and booster pumps were evaluated relative to their efficiency while the operational practices of the distribution system were reviewed. The results of the study indicated that the pump efficiencies ranged from 27% to 60%, and it was recommended that the KVID replace several low performing pumps. The cost of the upgrades was $136,000 and the project would be eligible for a $20,000 rebate from Arizona Public Service (APS). With the upgrades, KVID would save approximately $23,000 in annual power costs, resulting in a projected ten-year savings of $114,000 and a payback period of five years.

For new construction, it is imperative to choose a design firm with clear experience in designing energy efficient projects, as the design phase is the absolute best time to think about energy efficiency as well as renewable energy options. A plant that is designed with energy efficiency and renewable energy from the beginning has the potential to actually produce more energy than it uses.

Allocating the resources and time to conduct an energy audit and implement the required capital improvements and operational changes can produce significant benefits. Energy audits can pinpoint the most energy-consuming equipment, detect issues with aging equipment, and expose operational issues, as well as determine which upgrades would result in the best ROI. The result is a well-defined, defendable plan of action that will result in optimal energy savings.

www.epa.gov
www.esmap.org
www.nrel.gov
www.ase.org
www.mass.gov

SaveSave

SaveSave

Smart Grid Water Networks: Part of the Water Efficiency Arsenal

Water-Grid-FeatureThe impacts of global climate change have driven governments, businesses, and communities around the world to consider efficiency and conservation in all areas of our lives, rethink business plans, and reconsider the relationships between people and resources to create a more sustainable future.

Nowhere is this focus on sustainability clearer than in water utilities. Faced with an aging distribution infrastructure in need of overhauling, growing populations, and shrinking supply, utilities are struggling with developing innovative, yet cost effective, ways to maintain and improve already maxed out water systems.

Just as smart metering has shed light on our energy use, utilities, environmental groups, and governments are beginning to look to smart metering to help with water conservation.

What is Smart Networks and Metering? AMI vs. AMR

A smart water network – or smart grid for water – may be the next big thing as communities around the world come to terms with water scarcity and the need for water conservation.  The crux of the smart water network is advanced metering infrastructure (AMI) technology. AMI can provide a remote and constant two-way communication link between utilities, meters and consumers via the usual communications technologies (broadband, fiber optic cable, wireless, etc.).

As a key component of a smart water network, smart water meters integrated with sensing technologies give water utilities advanced tools for more efficiently measuring water consumption and providing water customers with data to help them monitor their water usage and reduce costs.  Often known as “smart lite”, advanced meter reading (AMR) technology, one-way information gathering from customer to utility is seen as a cost effective approach to accurate billing and leakage. This solves the bulk of many water utility needs.

Benefits – Knowledge is Power

Smart metering increases the information available to the customer which helps them better understand and curb their water use.

Preliminary investigation indicates that customers with displays are more likely to use less water. However, installing monitors at each customer site may come with a price tag water utilities find difficult to afford. As a result, many elect less expensive ways to provide consumption details, such as Web sites or printouts enclosed with bills. Although surveys indicate that customers prefer the on-site display, web portals are another effective method to link concerned customers to information on how to lower consumption and/or bills.

Smart metering also delivers valuable data to utilities. For example, utilities can use the data collected to detect customer-premises leaks from their end. Utilities could also use the technology to identify possible leaks at commercial and industrial properties with round-the-clock water use.

More over, according to UN-Water, approximately 8% of the world’s energy production is used for pumping, treating and transporting water. Saved water means saved energy—a double benefit—and a better future for generations to come.

Smart water networks have evolved to the point where they can reliably produce the benefits described above, within very reasonable payback periods. While many jurisdictions are contemplating extreme measures – water rationing, desalinization plants, building canals hundreds of miles long – smart water networks can reclaim 20% to 40% of water that is typically lost to leaks and theft, according to SmartGridNews.com.

So What’s the Catch?

While there are increasing studies looking at the benefits and uses of smart metering, utilities are not overlooking the price tag that comes along with the technology.    Additionally, the jury is still out whether or not customers will embrace yet another judgement on their lifestyle.  In the early days of energy metering, some utilities paid big bucks to have local  energy use comparisons printed on customer bills.  The frowning face on high energy-use customers’ bills did very little to encourage conservation and win over utilities good intentions with the public.

There are still many challenges in network understanding and costs analysis that make smart water networks slow in development. Despite the many benefits, justifying the implementation of the technology to support smart metering will require cooperation and support from local and regional governments, communities, and above all, customers.

Careful planning and close scrutiny of all the costs associated with implementing a smart water network will allow utilities to plan for scaleable implementation of this technology.