Coffee Day 2015: Coffee, the Environment, and Sustainability

national coffee day 2015This week, we celebrate coffee. Tuesday, September 29, is National Coffee Day, a beloved American holiday where coffee powerhouses such as Dunkin’ Donuts, Krispy Kreme, Peet’s, Starbucks, and Wawa offer freebies and discounts. As an added coffee bonus this year, the International Coffee Organisation (ICO) has designated October 1 as the first annual International Coffee Day. This special day will celebrate all things coffee and will be launched in Milan, Italy as part of the city’s 2015 World Fair.

Global Coffee Consumption

After only crude oil, coffee is the most sought commodity in the world, and is worth over $100 billion globally. Sugar, corn, natural gas, and even gold all take a back seat to coffee. The global population drinks over 500 billion cups of coffee every year and more than half of all Americans over the age of 18 drink coffee every single day. Coffee farms, 67% of which are in the Americas and 90% of which are in developing countries, provide the economic livelihood for over 25 million people. And while developing nations grow and produce the world’s coffee, industrialized nations drink it. After water, coffee is actually the most consumed beverage in the world. Finland drinks the most coffee per capita in the world, and America consumes the most coffee overall. Brazil, the top coffee producing nation in the world, ranks a distant 13th per capita consumer.

Environmental Impact

deforestation coffeeAs demand has increased, coffee producing countries have been responsible for a significant amount of global deforestation and watershed damage. Coffee was historically a shade-grown crop, intolerant of direct sunlight. Shade trees provide a habitat for birds that provide natural insect control, and they also enhance soil and encourage water retention in the soil, resulting in shade-grown coffee requiring little to no pesticides or fertilizers.

Unfortunately, only 24% of today’s coffee is actually shade-grown. Newer techniques that call for clear-cutting forests and applying chemicals have been found to greatly increase yields — but at great environmental and health cost. 60% of the six million acres of coffee lands have been completely stripped of shade trees since 1972, and coffee is now the third most pesticide-laden crop in the world, behind only tobacco and cotton. Bird populations have decreased by 20% in the last ten years alone, and soil erosion and depletion resulted in producers searching for new land on which to plant their coffee crops, and further deforestation, particularly of rainforests. Rainforests act as the world’s thermostat by regulating temperatures and weather patterns and are also critical in maintaining Earth’s finite supply of fresh water. Now understood to be unsustainable, this “new” method of growing coffee also damages watersheds and affects the health and livelihood of local populations.

algae_bloom
Excessive nitrogen or coffee wastewater from wet mills both contribute to algae blooms in coffee-growing nations

Because the land is clear-cut and coffee is typically grown in highlands, soil erosion and agrochemical runoff are major problems in coffee production. The excessive amount of pesticides and fertilizers needed to grow conventional coffee runs unhindered and unfiltered into lakes and streams downhill from the coffee shrubs. Very often, these lakes and streams are the main water supply for the local community. More and more frequently, water supplies in coffee-growing nations are becoming severely contaminated due to runoff from fertilizer, which adds nitrogen to the depleted soil, and, in turn, the local water. And since nitrogen is a vital nutrient for plants and encourages plant growth, it also encourages the growth of algae in bodies of water. Excessive algae in water bodies, called “blooms”, makes the water unfit for consumption and causes foul odors and tastes. When the algae finally dies and starts to decompose, it removes all oxygen from the water, causing ammonias to form, and results in the widespread die-off of fish and other aquatic organisms. Groundwater beneath coffee farms can also become contaminated with excess nitrogen, causing a health threat to humans.

Pesticide usage in coffee growing also contaminates water supplies. Whether entering the water supply through aerial spraying or from soil erosion and runoff, pesticides are known to be toxic to human and aquatic health. Many of the pesticides used in coffee growing nations have long been banned in the United States, and are known to bio-accumulate, disrupt hormones, and cause cancer.

Wet mill coffee processing uses an exorbitant amount of water and produces wastewater that can harm ecosystems in coffee-growing communities
Wet mill coffee processing uses an exorbitant amount of water and produces wastewater that can harm ecosystems in coffee-growing communities

And that’s just the growing. Add coffee harvesting and processing, and the outlook is grim. Conventional coffee is strip harvested, meaning all berries, ripe or not, are stripped off the vine, and sorted and depulped using a wet mill. Water-intensive mills, or wet mills, use water to sort and strip the beans of their mucilage, or protective coating. The beans are then allowed to ferment before they are washed, again utilizing an exorbitant amount of water, to ensure that all of the mucilage has been removed. Even small coffee mills utilize millions of gallons of water over a season, oftentimes depleting local water supplies and causing die-off of aquatic organisms. In addition, the wastewater produced by these wet mills contains nitrates, carbohydrates, proteins, fibers, fat, and many other substances, and these substances end up contaminating the local water supply. In fact, coffee wastewater is one of the largest contributors to water supply contamination in coffee-growing communities. Bacteria that break down the sugars and pectins in coffee wastewater require excessive oxygen, resulting in the same oxygen depletion and subsequent die-off caused by excessive nitrogen as described above. Many times, streams or other bodies of water contaminated in this way are effectively killed, requiring significant treatment that costs more than most of these communities can afford.

Sustainability

coffee_indonesia
A man hand strips coffee in Indonesia

Because of growing knowledge and concern over the detrimental environmental effects of coffee production, solutions have been increasing. Dry mills are one example. Dry mills utilize mechanical demucilagers, do not require fermentation or washing processes at all, and use less than three gallons of water per pound of dry coffee. For wet mills, a solution lies in wetland engineering. For example, TechnoServe and Mother Parkers Tea & Coffee have joined forces to install Vetiver grass wetlands at wet mills. These wetlands, which are a low-cost but sustainable wastewater treatment option, contain deep-rooted Vetiver grass that drinks in wastewater and slows infiltration. Any remaining effluent enters a small pond at the bottom of the wetland where it evaporates.

Table courtesy of Department of Wildlife Ecology and Conservation, University of Florida/IFAS Extension,
Table courtesy of Department of Wildlife Ecology and Conservation, University of Florida/IFAS Extension,

But there are still plenty of conventional coffee producers, simply because conventional coffee processes are cheaper. Therefore, some forward-thinking companies have taken it upon themselves to require better practices. Mega-coffee chain Starbucks, the third largest restaurant chain in the world, implemented one of the industry’s first sets of sustainability standards, called Coffee and Farmer Equity (C.A.F.E.) Practices. Verified by third-party experts, this set of standards is more stringent than even Organic Certification or Fair Trade Certification, and focuses on both environmentalism as well as social responsibility. Peet’s Coffee & Tea works with certification organizations such as Rainforest Alliance Certification and UTZ Certified — which is on par with Starbucks C.A.F.E. practices — to ensure that every bean they purchase is fair trade as well as sustainably grown. But the San Francisco Bay-based company takes it one step further: they roast all their beans in the nation’s first LEED Gold certified coffee roasting plant, opened in 2007. Other coffee certifications include 4C Certification and Smithsonian Migratory Bird Center’s Bird-Friendly Certification.

Conclusion

coffee loveCoffee is a beloved beverage, enjoyed worldwide throughout different cultures, but it has come under scrutiny for its negative environmental and humanitarian impact in recent years. There are ways to reduce and even remove the detrimental effects associated with coffee production, and some forward-thinking coffee companies have implemented buying standards in an effort to improve both our environment as well as the livelihood of coffee farmers, while many other small coffee companies sell only fair trade or organic coffees. This week, as we celebrate both National Coffee Day on Tuesday, September 29, and the first annual International Coffee Day on Thursday, October 1, we can choose to support coffee companies who grow responsibly, which means helping to protect our world’s most precious resource — water. Now that’s something to celebrate. Happy Coffee Week!

Tata & Howard Sponsors CTAWWA Golf Tournament to Benefit Water for People

Tata & Howard Sponsors CTAWWA Golf Tournament to Benefit Water for People

Funds raised at the tournament will support efforts to bring safe, clean drinking water to people in developing nations

The 2014 CTAWWA Golf Classic to benefit Water For People was well attended
The 2014 CTAWWA Golf Classic to benefit Water For People was well attended

MERIDEN, CT, August 18, 2015 – Tata & Howard is pleased to sponsor the American Water Works Association, Connecticut Section Golf Classic to be held on September 15, 2015 at the Tunxis Plantation Golf Course and Banquet Facilities in Farmington, CT. Funds raised at the tournament benefit Water for People, a nonprofit improving the quality of life in developing nations by supporting the development of locally sustainable drinking water resources, sanitation facilities, and hygiene education programs.

“Tata & Howard is privileged to sponsor the Golf Classic to benefit Water For People,” stated Stephen K. Rupar, P.E., Vice President and Manager of Tata & Howard’s Meriden, CT office, and Chair of the Connecticut Water Works Association. “We fully support Water For People’s mission to provide a safe and sustainable water supply on a global level.”

Water For People is Tata & Howard’s charity of choice. Employee-owners donate directly from their paychecks and the company matches 100% of every dollar donated in this way. Water For People is also the AWWA designated charity of choice, and is endorsed by the Water Environment Federation, the Water Quality Association, the National Association of Water Companies, the National Association of Clean Water Agencies, and the Association of Metropolitan Water Agencies.

“There’s a reason that Water For People is the charity of choice for so many organizations involved in the water environment,” noted Salvatore Longo, P.E., Vice President and Manager of Tata & Howard’s Waterbury, CT office. “Their vision to bring clean water to everyone, forever is something that directly reflects on our work — and something in which we all fully believe.”

For more information on the CTAWWA Golf Classic to benefit Water For People, please visit www.ctawwa.org.

 

The Criticality of Energy Efficiency for Water and Wastewater Utilities

electricity meterMunicipal water and wastewater services require electricity, and lots of it. Drinking water and wastewater systems in the United States account for 3-4% of our nation’s total energy usage and add over 45 million tons of greenhouse gases to our environment each year. High energy costs for water and wastewater utilities are straining municipal budgets and creating unsustainable operating costs, and with prices already on the rise due to increasing regulations and demand, passing energy costs on to consumers simply isn’t a viable option. Drinking water and wastewater treatment plants account for 30-40% of the total energy consumed by municipal governments, making them the single largest energy consumers in the municipal sector. Add to that the fact that energy currently accounts for an average of 40% of operational costs for drinking water systems and is expected to increase to 60% within the next 15 years, and it becomes clear that energy efficiency for water and wastewater utilities is no longer a choice – it’s a necessity.

But it’s not all doom and gloom. Energy costs for water and wastewater utilities are indeed significant, but they also represent the largest controllable cost of providing water and wastewater services. Studies have estimated that 15-30% energy savings is readily achievable through cost-effective efficiency measures in water and wastewater plants, and that utilities can realize significant financial returns with a payback period from only a few months to about five years.

lightbulb water Very often, utilities can save substantially by increasing the efficiency of pumps and aeration equipment at water and wastewater treatment plants. In addition, operational changes such as proactively shifting energy usage away from peak demand times where electricity is most expensive, or generating electricity and heat from biogas, can greatly reduce energy usage. Water and wastewater utilities are not typically designed and operated with energy efficiency as a primary objective, as more pressing concerns such as regulatory requirements, capital expenditure, reliability, and securing funding typically take precedence. However, it is important not to overlook these systems when communities fund energy improvement projects, as significant energy and monetary savings can be realized through operational changes and capital improvement projects. And these savings make a big difference. Even a 10% energy reduction in our nation’s drinking water and wastewater systems would save about $400 million and five billion kWh annually, greatly reducing both the financial burden currently plaguing water and wastewater utilities as well as our impact on the environment.

But where to start? The first step towards making informed decisions that result in the highest return on investment (ROI) in the shortest amount of time is an energy audit. Since 2008, EPA has been actively working with water and wastewater utilities to help them become more efficient and to reduce operational costs, and one of the key steps in their process is an energy audit. A quality water and/or wastewater energy audit should focus on energy efficient equipment replacement, operational modifications, and process control that will lead to improved efficiency and cost savings with the shortest possible payback period, and includes processes such as conducting on-site observations, testing existing systems and equipment, monitoring power usage and costs, and developing strategies to limit demand charges.

Kachina, Arizona
Kachina, Arizona

As an example, Tata & Howard conducted an energy audit on the water production assets and distribution system of the Kachina Village Improvement District (KVID) in Arizona. During the course of the study, the well pumps and booster pumps were evaluated relative to their efficiency while the operational practices of the distribution system were reviewed. The results of the study indicated that the pump efficiencies ranged from 27% to 60%, and it was recommended that the KVID replace several low performing pumps. The cost of the upgrades was $136,000 and the project would be eligible for a $20,000 rebate from Arizona Public Service (APS). With the upgrades, KVID would save approximately $23,000 in annual power costs, resulting in a projected ten-year savings of $114,000 and a payback period of five years.

For new construction, it is imperative to choose a design firm with clear experience in designing energy efficient projects, as the design phase is the absolute best time to think about energy efficiency as well as renewable energy options. A plant that is designed with energy efficiency and renewable energy from the beginning has the potential to actually produce more energy than it uses.

Allocating the resources and time to conduct an energy audit and implement the required capital improvements and operational changes can produce significant benefits. Energy audits can pinpoint the most energy-consuming equipment, detect issues with aging equipment, and expose operational issues, as well as determine which upgrades would result in the best ROI. The result is a well-defined, defendable plan of action that will result in optimal energy savings.

www.epa.gov
www.esmap.org
www.nrel.gov
www.ase.org
www.mass.gov

SaveSave

SaveSave

Tata & Howard sponsors The Watershed Fund annual fundraiser

Watershed_fundTata & Howard sponsors The Watershed Fund annual fundraiser

Tata & Howard, Inc. is pleased to announce its bronze level sponsorship of the South Central Connecticut Regional Water Authority (RWA) annual golf tournament to support The Watershed Fund. The annual fundraising event, open to RWA employees and their associates, is held at New Haven Country Club in Hamden, Connecticut.

The Watershed Fund recognizes that land use choices are important decisions confronting many towns and individuals across the region. Working in partnership with other entities, the Fund strives to enhance the environment and improve quality of life by protecting drinking water supplies and threatened watershed lands.

For 17 years, RWA’s employee golf tournament has been a major fundraising event and the main source of funding for The Watershed Fund’s Scholarship Program. The educational programs and scholarships supported by The Watershed Fund provide future decision makers with the tools to preserve and protect open space and drinking water supply resources. Since its inception, the program has provided 115 environmental studies students with more than $300,000 in scholarships, with another 18 students receiving over $40,000 in scholarships this year.

“Tata & Howard is honored to contribute to The Watershed Fund Scholarship Program,” said Stephen K. Rupar, P.E., Vice President and Manager of Tata & Howard’s Meriden, Connecticut office. “We are committed to investing in the education of our future environmental leaders, and we are confident they will make significant and innovative contributions to our nation’s environment, including drinking water.”

For additional information on The Watershed Fund, please visit www.thewatershedfund.org.

 

5 family-friendly water and wastewater field trips in New England

Summer is here, and with it comes long, lazy days, school vacation, and, of course, family trips. When the beaches, amusement parks, and movie theaters start to get stale, why not take a water or wastewater field trip to explore the inner workings of our nation’s water and wastewater infrastructure? We’ve assembled five excellent water and wastewater field trips that are right here in beautiful New England. These trips provide STEM (Science, Math, Engineering, and Technology) education while also being engaging and fascinating. And these trips aren’t just for budding engineers. Half of all STEM jobs do not require a college degree and pay higher than non-STEM jobs with similar educational requirements.

Top 5 Family-Friendly Water and Wastewater Field Trips in New England

deer_island_wastewater
Deer Island Wastewater Treatment Plant

1. Deer Island Wastewater Treatment Plant, Boston, MA — Operated by the Massachusetts Water Resource Authority (MWRA)

The MWRA offers tours of its Deer Island Wastewater Treatment Plant on Tuesdays and Fridays from April through November. All tours begin at 9:30 a.m. and are open to adults and kids in grades 7+. But the treatment facility isn’t the only attraction at Deer Island. With 60 acres of natural open space, Deer Island offers plenty to do for the entire family, including five miles of public walkways and trails for strolling, jogging, sightseeing, picnicking, fishing, and cycling. There are ten landscaped overlooks with sweeping views of the Boston skyline and islands, handicapped accessible paths, and low impact development (LID) features including low-maintenance, native plant species. The public access area is open year-round, from sunrise to sunset. https://www.mwra.com/03sewer/html/sewdi_access.htm

Waterworks Museum, Boston, MA
Waterworks Museum, Boston, MA

2. Waterworks Museum, Boston, MA

The Waterworks Museum is located on the site of the original Chestnut Hill reservoir and pumping station and provides regional information on clean water, health, engineers, and architecture. In addition to providing the history of waterworks in the City of Boston, the museum’s Great Engines Hall houses three historic, steam-powered pumping engines, and walking tours of the reservoir itself are available. The architecturally breathtaking museum is open Wednesday – Sunday from 11am-4pm year-round, with extended “Waterworks Wednesday” hours until 9pm from April through November. Waterworks Wednesdays feature authors, concerts, and guest speakers in addition to regular tours and learning opportunities. https://waterworksmuseum.org

Ben & Jerry's "Chunkinator" converts ice cream waste into energy
Ben & Jerry’s “Chunkinator” converts ice cream waste into energy

3. Ben & Jerry’s, Waterbury, VT

From its humble beginnings in a warehouse in Burlington, VT, Ben & Jerry’s has grown to a highly successful global corporation. And while the company has exponentially increased in both size and reach, it has remained loyal to its local roots. So when it was determined that the waste created in their Waterbury, Vermont location would overload the local wastewater treatment facility, they instead decided to funnel it to two of their local dairies where it is processed in a methane digester along with other farm waste. The result? Enough biomass energy to power the farms. Unfortunately, tours of the methane digester are not available. But that’s OK, because Ben & Jerry’s offers tours of its ice cream manufacturing facility, and these tours include education on the dairy waste – as well as ice cream samples. https://www.benjerry.com/about-us/factory-tours

BONUS: Building on their commitment to green energy, Ben & Jerry’s is the first ice cream company in the world to power one of its manufacturing plants using its own waste. Located in Hellendoorn, Netherlands, the “Chunkinator” is a BIOPAQ®AFR Biodigester containing over 24 billion natural micro-organisms that turn the plant’s own ice cream waste and wastewater into biogas that fuels the plant. To date, the brightly-painted Chunkinator has produced enough power to make over 16 million pints of Ben & Jerry’s ice cream. So if you happen to be in the Netherlands this summer, be sure to swing by to check it out! https://brightfuture.unilever.com/stories/423955/THE-CHUNKINATOR–Turning-ice-cream-into-energy.aspx

Maine's stunning Sebago Lake offers something for everyone
Maine’s stunning Sebago Lake offers something for everyone

4. Sebago Lake Water Treatment Facility, Standish, ME

Maine’s Sebago Lake Region is a popular summer destination that offers camping, fishing, boating, hiking, shopping, dining, live music, theatre, and much more, and families travel from all over the country to enjoy the region’s pristine, natural beauty. While you are there, you can add a little education into the family trip by visiting the Portland Water District’s Sebago Lake Water Treatment Facility. Tours are available on the first and third Thursdays of each month, beginning at 9:30am and lasting approximately two hours, and include both the facility and the lab. Due to the technical, complex nature presented, tours are recommended for high school age and older. Located on a 10-acre site in Standish, Maine, the state-of-the-art facility utilizes screening, ozonation, UV light treatment, chloramination, fluoridation, and corrosion control. https://www.pwd.org/tours

After visiting the Stamford Water Pollution Control Authority, be sure to stop by beautiful Cove Island Park
After visiting the Stamford Water Pollution Control Authority, be sure to stop by beautiful Cove Island Park

5. Stamford Water Pollution Control Authority (WCPA), Stamford, CT

The Stamford Water Pollution Control Facility processes wastewater from Stamford and Darien, CT and discharges the treated water into the Stamford Harbor. The site has been treating wastewater since 1900, with the first plant being built in 1943. Upgraded in 1976 and again in 2006, the facility is manned 24/7/365. In response to multiple requests for tours, WPCA began offering regular public tours in 2013. Held on the second Friday of each month at 12:30pm (weather permitting), the tour includes classroom education on the wastewater treatment process followed by a walking tour of the plant to see it in full operation. Total tour time is approximately one and a half hours. In addition, comprehensive student or group educational tours for all ages can be scheduled in advance for Monday through Friday between the hours of 8am and 3pm. https://www.stamfordwpca.org/public-outreach.aspx

BONUS: While visiting Stamford, families can also visit Cove Island Park, a beautiful 83-acre beach and park on Long Island Sound that offers plenty of space for walking, biking, picnicking, or swimming, or they can even catch a ferry over to New York City.

Summer in New England is simply perfect for day tripping, and the education provided by a water or wastewater treatment plant tour is invaluable. So check out one (or more) of these five water and wastewater field trips, and let us know what you think. Happy summer!

Tata & Howard Raises Funds for Camp Sunshine

Tata & Howard Raises Funds for Camp Sunshine

flip flop day camp sunshine
Collin Stuart, Heidi White, Brooke Cotta, Marie Rivers, Molly Coughlin, Amanda Cavaliere, Karen Gracey, Brittany Colcord, Jenna Rzasa, and Matt St. Pierre pose with their flip flops

New England-based engineering firm participates in National Flip Flop Day to support Maine camp

Employee-owners from Tata & Howard, Inc., a leading innovator in water, wastewater, stormwater, and environmental services engineering solutions, participated in National Flip Flop Day on June 19th. The holiday, which falls on the third Friday in June each year, was started nine years ago by Tropical Smoothie Café in order to raise funds to benefit Camp Sunshine, a retreat in Maine for children with life-threatening illnesses and their families.

Tata & Howard team members participated in their own version of National Flip Flop Day in which employee-owners were able to wear flip flops to work in exchange for a donation to Camp Sunshine. 100% of donations were matched by Tata & Howard’s Philanthropy Committee.

“With offices throughout New England, Tata & Howard is committed to finding ways to give back to the community in which we live and work,” said Jenna Rzasa, P.E., Vice President of Tata & Howard. “Maine’s Camp Sunshine provides both solace and joy to severely ill children and their families, and we are deeply honored to support their efforts.”

Located in beautiful Casco, Maine, Camp Sunshine is the only organization in the nation that focuses on not only addressing the effects of a life-threatening illness on the child who is ill, but also the entire family. Surrounded by professional staff within the breathtaking grounds of Camp Sunshine, families receive a reprieve from the stress of having a child with an illness and spend a week just having fun together.

To date, National Flip Flop Day has raised over $2 million for Camp Sunshine.

The 12 Coolest Water Storage Tanks in New England

Water storage tanks are an integral part of public water systems, providing storage of potable water as well as emergency sources for fire protection. Set high enough above the ground to sufficiently pressurize a water supply system for emergency distribution, these highly visible structures are often cylindrical and painted in neutral or pastel colors. Water storage tanks are readily seen while driving along highways, and often don’t make much of an impression. However, there are some water storage tanks around the world that are quite eye-catching, many of which have been written about. And while these tanks are certainly fascinating, we thought it would be fun to take a look a little closer to home.

The 12 coolest water storage tanks in New England

Tower_Hill_Water_Tower_Lawrence_MA_TH
l. early 1900’s image of Tower Hill Water Tower in Lawrence, MA; r. the tower as it stands today

1. Tower Hill Water Tower, Lawrence, MA

The High Service Water Tower, also called Tower Hill Water Tower, was built in 1896 as a high pressure standpipe. The tower, constructed of red brick with granite trim around a steel standpipe, stands 157 feet and was designed by George G. Adams, a noted local architect. The octagonal, Romanesque structure includes a balcony capped by a chateauesque roof, round-arch windows, and a round staircase along one side. It was added to the National Register of Historic Places in 1978 and named a Water Landmark by the American Water Works Association (AWWA) in 1979.

cathance-water_tower_topsham_ME_TH
Cathance Water Tower in Topsham, ME pre- and post-renovation

2. Cathance Water Tower, Topsham, ME

The Cathance Water Tower located in Topsham, Maine was built in 1906 to serve the Rogers’ family household and farm. The Tower is 29-feet tall with a 12-foot 4-inch square base and originally held over 5,000 gallons of water. In January 2001, the Cathance Tower was added to the National Register of Historic Places as a locally significant and rare surviving domestic water supply structure.  Also in 2001, the Town of Topsham received grant money to restore the Tower, and the restoration was completed in 2005. The stylized structure is essentially unaltered from its original state and is now owned by the Town.

salem_witch_massachusetts_water_tank
The large flying witch painted on the water tank in Salem, MA lends levity to Salem’s dark history

3. Salem, MA

The water storage tank in Salem, MA is rather ordinary save for one very important detail: there is a silhouette of a witch riding on a broomstick painted onto the side of the tank. Salem is well known for its brutal Salem witch trials of 1692, during which 20 innocent people were executed, and to this day Salem gets much of its cultural identity from the trials. During Halloween, Salem attracts thousands of tourists dressed in witchy garb as well as people interested in the paranormal and witchcraft.

Earles_Court_Tower_Narragansett_RI_TH
l. circa 1911 postcard depicts Earles Court Tower in Narragansett, RI during its glory; r. today, only the base remains

4. Earles Court Tower, Narragansett, RI

The Earles Court Tower was built between 1887-1888 in order to serve the summer community in the popular seaside resort town of Narragansett, Rhode Island. The original tower included a cylindrical stone base upon which was constructed a wooden superstructure that included a balcony and a giant, ornate griffin. In 1928, a strong storm decimated the wooden structure, but the stone base stands to this day. There is currently a grassroots committee of residents who are trying to raise funds to restore the tower to its former glory.

l. Circa 1909 postcard of Pepperell Park, Saco, ME clearly shows the water tower in the background r. The tower as it stands today
l. circa 1909 postcard of Pepperell Park, Saco, ME clearly shows the water tower in the background; r. the tower as it stands today

5. Pepperell Park, Saco, ME

The stone water tower in Pepperell Park, Saco, Maine was constructed in 1887 in order to irrigate Pepperell Park. Horace Wadlin, architect of six other buildings in the Biddeford and Saco area including the historic Dyer Library, designed the charming tower, which still exists today but is no longer functional.

fort_ethan_allen_water_tower_essex_vermont
l. circa 1910 postcard shows Fort Ethan Allen water tower in Essex, VT; r. the tower is largely preserved save for its weathervane that mysteriously vanished

6. Fort Ethan Allen, Essex, VT

The 80-foot tall water tower constructed in 1893 at Fort Ethan Allen was the first of 100 structures to be built at the fort. The tower boasts a 21-foot diameter base that tapers to a conical slate roof that used to be adorned with a weathervane, which has since vanished. The exterior of the tower has stood the test of time remarkably well, as has the intact 50,000-gallon steel tank inside the structure. Because the fort did not have electricity until 1905, water was originally pumped to the tower by steam engines. Unfortunately, the interior circular wooden stairway that winds its way to the observation deck was declared unsafe in 2008, so tours are no longer allowed. There is currently an effort underway to raise an estimated $250,000 to rehab the tower and reopen it to the public.

avon_old_farms_water_tower_forge
l. the Avon Old Farms School water tower just after its original construction; r. the tower was renovated in 2012 with attention to authenticity and detail

7. Avon Farms School, Avon, CT

The water tower and forge at the entrance to the all-boys Avon Old Farms School in Avon, CT were built in 1922. The English Cotswold and Tudor-styled water tower is cylindrical in shape and constructed of red sandstone and brick, and was operational until 1976 when cisterns were placed underground. It was fully restored in 2012 and now functions as an art gallery and reception venue.

bristol_ri_roger_williams_water_tower
December 30, 2009 ceremony where the water tower is presented to the town

8. Roger Williams University Gift, Bristol, RI

To onlookers, the Bristol, RI water storage tank doesn’t appear to be anything noteworthy. After all, it’s a fairly standard elevated steel tank painted basic white. But what makes this water tower special is how it came to be. During some onsite construction in 2008, Roger Williams University encountered a problem: low water pressure. But instead of bringing in pressure booster pumps to campus and leaving the town to fend for itself, the university decided to donate $1 million to the town for a new water tower. The water tower was constructed in 2009, and on December 30 of that year, it was formally presented to the town at a ceremony — complete with a giant red bow.

fort_revere_telegraph_hill_hull_ma-water_tower
Fort and water tower at Fort Revere in Hull, MA

9. Telegraph Hill, Hull, MA

Telegraph Hill is part of Fort Revere Park, a 6-acre historic site located on a small peninsula in the town of Hull, Massachusetts. Telegraph Hill was originally used as a fort in 1776 to defend the port of Boston, and the first telegraph tower was built in 1827. In 1903, the United States Government hired the Hennebique Construction Company to build a 120-foot high, 25-foot diameter reinforced concrete tower housing a 118,000 gallon steel water storage tank to serve Fort Revere. The tower was the first reinforced concrete water tower in New England, and it also served as an observation tower for the Army. The tower was restored in 1975 and was designated an American Water Landmark in 2003. Telegraph Hill was added to the National Register of Historic Places in 1976.

cochichuate_standpipe
l. an old black and white photo of Fort Hill Water Tower in Roxbury, MA; r. the tower is remarkably well-preserved today

10. Cochituate Standpipe at Fort Hill, Roxbury, MA

Like Telegraph Hill, Fort Hill in Roxbury, Massachusetts was originally used as a fort to defend the area during the Revolutionary War because of its high location. In 1869, the Cochituate Water Company constructed a 130-foot tall brick tower on the site to house an 80-foot tall high pressure water tank and to provide visitors with a clear view of Boston and the surrounding area. The gothic tower, known as the Cochituate Standpipe, is architecturally stunning and in beautiful condition – even the original spiral staircase that wraps around the water tank still remains. The entire neighborhood of Fort Hill, which is sometimes referred to as Highland Park, was listed on the National Register of Historic Places in 1989.

bangor_maine_thomas_hill_standpipe_water_tank
The Thomas Hill Standpipe in Bangor, Maine has been in continual use since its construction in 1897

11. Thomas Hill Standpipe, Bangor, ME

The 50-foot tall, 75-foot diameter riveted steel tank, which holds 1.75 million gallons of water, was designed by A.B. Tower of Holyoke, Massachusetts and was constructed in 1897 by the New Jersey Steel and Iron Company atop Thomas Hill in Bangor, Maine. The tank is enclosed by a wooden jacket and has been continually used for its original purpose of regulating the town’s water pressure and providing an emergency source since its construction. Bangor Water District assumed ownership of the standpipe in 1957 and it was added to the National Register of Historic Places in 1974. It is also designated an American Water Landmark by the AWWA. Fun fact: the Thomas Hill Standpipe is within walking distance of renowned author Stephen King’s home, and is commonly believed to be the inspiration for the haunted standpipe in his best-selling novel It.

lawson_tower_scituate_massachusetts
l. illustration of the tower just after construction; r. the tower as it stands today

12. Lawson Tower, Scituate, MA

153-foot tall Lawson Tower was constructed in 1902 to hide a 276,000-gallon water tank from the view of Boston multi-millionaire Thomas W. Lawson’s “Dreamworld” estate across the street. Lawson himself paid for the structure, and he spared no expense. The tower was built in the style of a European castle turret with 123 steps to the ornate top, in which there are ten bells ranging in size from 300 to 3,000 pounds. The bells could be played from either the bell room or from a console in the clavier room. The tower is not only aesthetically pleasing but also provides sweeping views of the area, allowing visitors the ability to see all the way to Provincetown on a clear day. It was designated an American Water Landmark by the AWWA in 1974 and was added to the National Register of Historic Places in 1976. The Scituate Water Company stopped using the interior tank in 1988, and the tower is now a popular tourist attraction.

60 Minutes Water Episode Sparks Some Debate

drought_californiaOn May 31, 2015, 60 Minutes aired an episode on water that discussed the depletion of our nation’s groundwater. 60 Minutes reporter Leslie Stahl met with Jay Famiglietti, a leading groundwater expert and Earth sciences professor at the University of California, Irvine, in an effort to shed some light on the drought affecting California. The report was alarming, noting that we are pumping out our nation’s groundwater faster than it can replenish itself. And while reclaimed water was discussed as a possible solution, with Ms. Stahl dramatically drinking water that had been wastewater just 45 minutes earlier, at least one reporter thinks the 60 Minutes water report fell somewhat flat.

Clark Wolf, a contributor for Forbes Magazine, accused the popular Sunday evening news show of only showing half the story. While 60 Minutes successfully explained the realities of groundwater and aquifers, Wolf notes, the popular news program failed to illustrate the greater implications or, beyond reclaimed water, provide any type of long-term, viable solution. In addition, Wolf notes that California’s agricultural sector needs to look towards more sustainable growing methods.

So who is right? You can find the 60 Minutes video and transcript here and Wolf’s article here in order to form your own opinion. But no matter which news piece is perceived as more accurate, one thing is certain: people are finally talking about water, its scarcity, and how we can protect it for future generations. And we can all agree that that is a good thing.

Tata & Howard Is Awarded the Highest Number of DWINSA Contracts in Massachusetts 

Tata & Howard Is Awarded the Highest Number of DWINSA Contracts in Massachusetts

Marlborough, MA engineering consulting firm selected by 16 public water systems to conduct their surveys 

Tata & Howard's corporate office in Marlborough, MA
Tata & Howard’s corporate office in Marlborough, MA

May 6, 2015 — Tata & Howard, Inc., a leading innovator in water, wastewater, stormwater, and environmental services engineering solutions, has been awarded 16 Drinking Water Infrastructure Needs Survey Assessments (DWINSA) by the Commonwealth of Massachusetts — Clean Water Trust and the Massachusetts Department of Environmental Protection (MassDEP). According to the MassDEP, the contracts represent the highest number awarded to any engineering consultant in the Commonwealth. DWINSA work is intended to identify capital asset needs for community water systems in the state through a DEP grant program.

“Our niche market has always been water,” said Patrick S. O’Neale, Vice President of Tata & Howard, Inc., and Project Manager for the DWINSA contracts. “Our targeted expertise, decades of experience, and exceptional service in the water environment have all contributed to our reputation as the area’s water expert, and these DWINSA contract awards solidify our standing as the leader in drinking water engineering solutions in Massachusetts.”

The following 16 public water systems selected Tata & Howard to conduct their 2015 DWINSA: Aquarion Water Company Millbury, Avon Water Department, Dighton Water District, Dudley Water Department, Edgartown Water Department, Falmouth Water Department, Halifax Water Department, Hingham/Hull Aquarion Water Company, Newton Water Department, Northampton Water Department, Pepperell DPW-Water Division, Sandwich Water District, Uxbridge DPW, Water Division, Westfield Water Department, Worcester DPW-Water Supply Division, and North Brookfield. All of the surveys require a 75% completion date by June 30, 2015.

Effective Water and Wastewater Utility Management

A water main break is a common occurrence with our nation’s failing infrastructure

As water and wastewater utilities nationwide face an increasing number of challenges, including rising costs and population, aging infrastructure, drought, increasingly stringent regulatory requirements, and a rapidly changing workforce, creative and innovative methodologies for treatment and distribution along with efficient and effective utility management have become paramount. In order to ensure a strong and viable utility for future generations, utilities must find ways to improve their products and services while increasing community support. Effective water and wastewater utility management helps utilities improve performance in critical areas while responding to current and future challenges, all with limited infrastructure dollars.

In May of 2007, six major water and wastewater associations and the U.S. Environmental Protection Agency signed an historic agreement pledging to support effective utility management collectively and individually throughout the water sector and to develop a joint strategy to identify, encourage, and recognize excellence in water and wastewater utility management. Participating organizations included the following:

  • Association of Metropolitan Water Agencies (AMWA)
  • American Public Works Association (APWA)
  • American Water Works Association (AWWA)
  • National Association of Clean Water Agencies (NACWA)
  • National Association of Water Companies (NAWC)
  • United States Environmental Protection Agency (EPA)
  • Water Environment Federation (WEF)

The result of this powerhouse collaboration was the Effective Utility Management Primer, issued in June of 2008. The Primer, designed specifically to assist water and wastewater managers in identifying and addressing their most urgent needs through a customized, incremental approach, outlines ten attributes of effectively managed utilities along with five keys to management success:

Ten Attributes of Effectively Managed Water Sector Utilities

  1. Effective Utility Management: A Primer for Water and WastewaterProduct Quality produces potable water, treated effluent, and process residuals in full compliance with regulatory and reliability requirements and consistent with customer, public health, and ecological needs.
  2. Customer Satisfaction provides reliable, responsive, and affordable services in line with explicit, customer- accepted service levels. Receives timely customer feedback to maintain responsiveness to customer needs and emergencies.
  3. Employee and Leadership Development recruits and retains a workforce that is competent, motivated, adaptive, and safe-working. Establishes a participatory, collaborative organization dedicated to continual learning and improvement. Ensures employee institutional knowledge is retained and improved upon over time. Provides a focus on and emphasizes opportunities for professional and leadership development and strives to create an integrated and well-coordinated senior leadership team.
  4. Operational Optimization ensures ongoing, timely, cost-effective, reliable, and sustainable performance improvements in all facets of its operations. Minimizes resource use, loss, and impacts from day-to-day operations. Maintains awareness of information and operational technology developments to anticipate and support timely adoption of improvements.
  5. Financial Viability understands the full life-cycle cost of the utility and establishes and maintains an effective balance between long-term debt, asset values, operations and maintenance expenditures, and operating revenues. Establishes predictable rates—consistent with community expectations and acceptability—adequate to recover costs, provide for reserves, maintain support from bond rating agencies, and plan and invest for future needs.
  6. Infrastructure Stability understands the condition of and costs associated with critical infrastructure assets. Maintains and enhances the condition of all assets over the long-term at the lowest possible life-cycle cost and acceptable risk consistent with customer, community, and regulator-supported service levels, and consistent with anticipated growth and system reliability goals. Assures asset repair, rehabilitation, and replacement efforts are coordinated within the community to minimize disruptions and other negative consequences.
  7. Operational Resiliency ensures utility leadership and staff work together to anticipate and avoid problems. Proactively identifies, assesses, establishes tolerance levels for, and effectively manages a full range of business risks (including legal, regulatory, financial, environmental, safety, security, and natural disaster-related) in a proactive way consistent with industry trends and system reliability goals.
  8. Community Sustainability is explicitly cognizant of and attentive to the impacts its decisions have on current and long-term future community and watershed health and welfare. Manages operations, infrastructure, and investments to protect, restore, and enhance the natural environment; efficiently uses water and energy resources; promotes economic vitality; and engenders overall community improvement. Explicitly considers a variety of pollution prevention, watershed, and source water protection approaches as part of an overall strategy to maintain and enhance ecological and community sustainability.
  9. Water Resource Adequacy ensures water availability consistent with current and future customer needs through long-term resource supply and demand analysis, conservation, and public education. Explicitly considers its role in water availability and manages operations to provide for long-term aquifer and surface water sustainability and replenishment.
  10. Stakeholder Understanding and Support engenders understanding and support from oversight bodies, community and watershed interests, and regulatory bodies for service levels, rate structures, operating budgets, capital improvement programs, and risk management decisions. Actively involves stakeholders in the decisions that will affect them.

Five Keys to Management Success

  1. water_utility_leadershipLeadership
    Leadership is critical to effective utility management, particularly in the context of driving and inspiring change within an organization. Leadership refers both to individuals who can be effective champions for improvement, and to teams that provide resilient, day-to-day management continuity and direction. Effective leadership ensures that the utility’s direction is understood, embraced, and followed on an ongoing basis throughout the management cycle.
  2. Strategic Business Planning
    Strategic business planning is an important tool for achieving balance and cohesion across the Attributes. A strategic plan provides a framework for decision making by assessing current conditions, strengths and weaknesses; assessing underlying causes and effects; and establishing vision, objectives, and strategies. It establishes specific implementation steps that will move a utility from its current level of performance to achieving its vision.
  3. Organizational Approaches
    There are a variety of organizational approaches that contribute to overall effective utility management and that are critical to the success of management improvement efforts, including actively engaging employees in improvement efforts; deploying an explicit change management process that anticipates and plans for change and encourages staff at all levels to embrace change; and utilizing implementation strategies that seek, identify, and celebrate victories.
  4. Measurement
    Measurement is critical to management improvement efforts and is the backbone of successful continual improvement management and strategic business planning. A measurement system serves many vital purposes, including focusing attention on key issues, clarifying expectations, facilitating decision making, and, most importantly, learning and improving.
  5. Continual Improvement Management Framework
    A continual improvement management framework can help utilities understand improvement opportunities and establish explicit service levels, guide investment and operational decisions, form the basis for ongoing measurement, and provide the ability to communicate clearly with customers and key stakeholders. This framework plays a central role in effective utility management and is critical to making progress.

OK – Now What?

business_overwhelmedSo how does a utility assess, address, and implement these changes? The primer further recommended an assessment tool with five steps, for which the instructions comprise the latter 35 pages of the Effective Utility Management Primer. Admittedly, the entire process requires dedicated time and personnel commitment from the utility. While some utility managers have had success in applying the assessment to their utility, many have found the process to require resources simply unavailable to them. Tata & Howard has developed two proprietary innovations that assist water and wastewater utilities in the identification of their most urgent needs as well as effective and efficient utility management.

Business Practice Evaluations

Business Practice Evaluations (BPEs) assess the health of a utility’s work practices by implementing a framework for a structured approach to managing, operating, and maintaining in a more business-like manner. This assessment provides the information and planning required by the Primer, specifically in the Five Keys to Management Success. A BPE’s primary focus is on effective management.

The overall goal of the assessment process is more efficient and effective work practices, and the assessment process and tools developed enable utility managers to assess the efficiency and effectiveness of the utility in comparison to generally accepted industry standards. The assessment includes documentation of current business practices, identification of opportunities for improvement, conducting interviews including a diagonal slice of the organization, and observation of work practices in the field. From this assessment we make recommendations to improve system performance, and the structured approach is fully customized and includes all functions of the utility — from administration and technical to operations and maintenance. The assessment process allows utility executives to proactively develop system specific plans, programs, and timelines to optimize the overall utility system programs.

Capital Efficiency Plans™

capitalWhere BPEs focus on management, Capital Efficiency Plans™ (CEPs) address the utility itself, combining the concepts of hydraulic modeling, system criticality, and asset management into a single comprehensive report. Each report is customized to the individual utility system and provides utilities with a database and Geographic Information System (GIS) representation for each pipe segment within their underground piping system. The CEP report also prioritizes system piping improvements and provides estimated costs for replacement and rehabilitation.

Each water and wastewater system has unique characteristics and challenges that are discussed at our CEP workshop held with knowledgeable field staff and managers for each project. The workshops provide significant value by filling in data gaps, correcting incorrect records, and identifying specific issues and critical components that are custom to the system. Our completed studies have been well received by many utilities who have found our methodology not only practical and understandable, but also defendable when justifying projects and procuring funding.

In Conclusion

Water and wastewater utilities today are finding themselves increasingly burdened with decreased revenue, excessive demand, and crumbling infrastrucure. Strict new regulations and a changing workforce have also added to the challenge, and it is imperative that water and wastewater utilities find ways to efficiently and effectively improve systems while implementing successful management strategies. Targeted assessments, strategic planning, and identification and implementation of best practices will be the foundation of all successful utilities in the future.