Ozone Water Treatment Plant in Franklin, MA

Tata & Howard provided design and construction services for a new water treatment facility that houses a 1.2 mgd ultrafiltration system and completed a pilot test that consisted of an evaluation of two separate ultrafiltration technologies. Franklin Wells No. 1 and 2, located off Hayward Street in Franklin, Massachusetts were installed in the 1940’s with a combined safe yield of 1.2 million gallons per day. Due to high concentrations of iron and manganese in the groundwater, the wells were only used to meet peak water demands during the summer months. The construction of the water treatment facility recaptures the yield from these two sources.

The water treatment facility consists of a main building which houses static mixers, ozone feed equipment, chemical feed equipment, prefilters, membrane filtration equipment, instrumentation and controls. Treatment consists of ozone oxidation followed by membrane ultrafiltration. The project was funded in part by the Massachusetts Water Pollution Abatement Trust through a low interest state revolving fund loan.

The overall treatment scheme is as follows: ozone injection, oxidation of iron and manganese in an ozone contact tank, prefiltration, treatment through two ultrafiltration membrane skids, chlorination prior to a clearwell, and fluoride addition prior to discharge into the distribution system. The plant is designed to recycle backwash water and membrane recirculation water to the head of the plant utilizing two decant tanks. Ozone is produced on site utilizing compressed air, while a LOX tank is available to allow for the production of additional ozone if required in the future.

 

Capital Efficiency Plan™ for Manchester-By-The-Sea, MA

Tata & Howard, Inc. was recently retained by the Town of Manchester-by-the-Sea to complete a Capital Efficiency Plan for the Town’s water system. The system was evaluated to identify areas of the water distribution system in need of rehabilitation, repair, or replacement, and to prioritize improvements to make the most efficient use of the Town’s capital budget. The study evaluates the existing water infrastructure including water transmission and distribution piping and appurtenances. In addition, water storage and supply needs were evaluated and prioritized.

The analysis and improvements in this report are based on the Three Circles Approach for optimum capital efficiency, which combines hydraulic and critical component considerations with an asset management rating system to evaluate the condition of the water mains in the distribution system. Each circle represents a unique set of evaluation criteria for each water main segment.  From each set of criteria, system deficiencies are identified. System deficiencies from each circle are then compared. Any deficiency that falls into more than one circle is given higher priority than one that does not.

\Using the Three Circle Approach, recommended improvements will result in the most benefit to the system. In addition, the Three Circle Approach allows us to identify any situations that mitigate a deficiency in one circle and eliminate a deficiency in another circle. By integrating all three sets of criteria, the infrastructure improvement decision making process and overall capital efficiency are optimized.

Recommendations included a siting study for a second storage tank, Phase I-III distribution system improvements, and the continuance of scheduled maintenance programs such as hydrant flushing, leak detection, and meter testing. The Town’s pavement management plan was also taken into consideration to best prioritize and coordinate utility work with roadway reconstruction.

 

SaveSave

SaveSave

Capital Efficiency Plan™ and Water Supply Study in Rowley, MA

A Capital Efficiency Plan was completed for the Town of Rowley in May 2017.  The study evaluated the 45 miles of the Town’s water distribution system using the Three Circles Approach, which consists of a system hydraulic evaluation, criticality component assessment, and asset management considerations. From each set of criteria, system deficiencies were identified and a 20-year recommended improvements plan was provided. Recommended improvements consisted of water main replacement projects, a pumping capacity evaluation and well redevelopment study, an interconnection analysis, and a distribution static pressure evaluation.

 

Capital Efficiency Plan™ for Norwalk, CT First Taxing District

Tata & Howard, Inc. was retained by the First District Water Department (FDWD) to complete a Capital Efficiency Plan for the First District water system in the City of Norwalk, CT.  Areas of the water distribution system in need of rehabilitation, repair, or replacement, were identified and improvements were prioritized to make the most efficient use of the FDWD’s capital budget. The study evaluated the existing water infrastructure including water transmission and distribution piping and appurtenances. In addition, water storage needs were evaluated and prioritized.

Tata & Howard evaluated the water distribution system using the Three Circle Approach, which consists of evaluation criteria including a system hydraulic evaluation, a critical component assessment, and asset management considerations.

Hydraulic improvements included recommendations that would strengthen the transmission capabilities of the system or provide an ISO recommended fire flow to a certain area. Priority 2 recommendations were identified as part of a system-wide evaluation to improve estimated needed fire flows and system looping.


A critical component assessment was performed for the water distribution system to evaluate the impact of potential water main failures on the system.  The critical component assessment includes identification of critical areas served, critical water mains, and the need for redundant mains.  Critical areas served were identified by the FDWD and include water department facilities, medical facilities, schools, and business districts. Critical water mains include primary transmission lines as well as water mains that cross over major highways, rivers, and railroad tracks. Factors that affected the decision to replace or rehabilitate a water main include break history, material, age, diameter, soil conditions, water quality, and pressure.

An asset management assessment was completed for the system. A number of factors are considered in the ratings including break history, material, age, diameter, soil conditions, water quality, and pressure, and these factors affect the decision to replace or rehabilitate a water main.

Utilizing the Three Circle Approach, improvements were recommended and prioritized based on the aforementioned criteria. Phase I improvements include any recommended improvements that fall into all three circles and are therefore hydraulically deficient, critical, and have a high asset management score.  There are approximately 16,300 linear feet of new main in the Phase I recommended improvements. Phase II improvements include any recommended improvements that fall into two of the circles. There are approximately 81,400 linear feet of new main in the Phase IIa and Phase IIb recommended improvements. Phase III recommendations include any recommended improvements that are needed hydraulically or that have a high asset management score indicating poor condition. The Phase IIIa and Phase IIIb include approximately 157,000 linear feet of new main. In addition, recommendations included soil testing for corrosivity prior to ductile water main installation, implementation of a unidirectional flushing program, and annual updating of the hydraulic model.

Capital Efficiency Plan™ and Water System Master Plan, Attleboro, MA

Tata & Howard, Inc. was retained by the City of Attleboro to complete a Capital Efficiency Plan and Water System Master Plan for the Attleboro water system.  The purpose of the Capital Efficiency Plan portion of the project was to identify areas of the water distribution system in need of rehabilitation, repair, or replacement, and to prioritize improvements to make the most efficient use of the City’s capital budget. The Water System Master Plan portion of the project created an inventory of the existing above ground water infrastructure assets including wells, pumping and treatment facilities, and water storage tanks. The inventory can be used to track maintenance, repair, and replacement work.  Basin safe yields were reviewed and compared to projected demands to evaluate the adequacy of sources of supply. In addition, the project included creation of an extended period simulation (EPS) hydraulic model which can be used to analyze the system and account for changes over time.

An asset management assessment was completed for the system. Several factors are considered in the assessment including age, material, diameter, break history, soil conditions, water quality, pressure, and whether the main was installed poorly.  These factors affect the decision to replace or rehabilitate a water main.  Using our asset management rating approach, each water main in the system was assigned a rating based on these factors. Utilizing the Three Circles Approach, improvements were recommended and prioritized based on the aforementioned criteria. Recommended improvements include the following:

  • Three phases of water main replacement projects;
  • A Water Quality and System Optimization Study to evaluate ways the City can lower the water age in the storage tank;
  • A study to evaluate improvements to maximize available yield;
  • Collection and maintenance of data on water main failures as well as pipe crushing results from water mains that have failed;
  • Testing of soil for corrosivity prior to installation of new ductile iron water mains;
  • Implementation of a Unidirectional Flushing Program; and
  • Minor repairs and security improvements to address deficiencies in the City’s above ground assets.

SaveSave

Pilot Testing for Iron and Manganese Removal in Barnstable, MA

Due to elevated levels of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), 1,4 Dioxane, and iron and manganese in the three drinking water production wells at the Maher Water Treatment Facility, the Town of Barnstable is proceeding with design and construction of upgrades at the facility to treat for these constituents.

Pilot testing includes carbon, Greensand, and LayneOx filters

The Town of Barnstable is currently conducting pilot testing at the site to determine the required design parameters, treatment process effectiveness, and best technology to achieve the desired treated water.  Treatment processes associated with pilot testing include GreensandPlus and LayneOx for removal of iron and manganese, advanced oxidation (ultraviolet light with hydrogen peroxide) for removal of 1,4-dioxane, and granular activated carbon (GAC) for removal of PFOS and PFOA.  Treatment for 1,4 Dioxane is the primary goal of the pilot test in order to meet the requirements of the Massachusetts Department of Environmental Protection (MassDEP) New Technology Approval process.

The MassDEP has confirmed that pilot testing of GAC filtration at the Maher facility is not a statutory requirement due to the current use of this water treatment technology at the Town’s Mary Dunn Wells and the availability of current water quality data for treatment of PFOS/PFOA within the same water system.  However, the Town has decided to include GAC filtration with pilot testing of advanced oxidation and iron and manganese removal to evaluate the performance of all proposed treatment processes operating together.

UV reactor for pilot test

Pilot testing is being conducted by Blueleaf, Inc. as a sub-consultant to Tata & Howard, Inc.  Pilot testing was completed in 2017.

 

 

 

 

Water Main in Palmer, MA, funded by a CDBG

Tata & Howard provided design of 1,400 linear feet of 12-inch diameter water main on Griffin Street, High Street, and Stewart Street. Work included the preparation of design plans and specifications, hydraulic modeling to determine main size, and letter and cost estimate to the Palmer Community Development Department. Tata & Howard also provided construction administration and resident observation services. The project was funded by a USDA Rural Development Community Development Block Grant (CDBG).

 

Funding Assistance for WWTF Upgrade in Lyndon, VT

Upgrade for a 750,000 gallon per day extended aeration wastewater treatment facility to an A/O biological facility. Assistance included acquiring State CWSRF planning grants and USDA Rural Development grant for extensive improvements including separation of combined sewer/stormwater collection systems (CSO), advanced Class A sludge treatment, and reconstruction of original 1970’s treatment facility to new Anoxic/Oxic Treatment System. Total grant funds were $7,275,000.

Water Treatment Plant in Concord, MA

This project included construction of a 1.5 mgd capacity water treatment facility to treat potable water pumped from the existing Deaconess Well. The water treatment facility consisted of six vertical LayneOx pressure filters. The work also included demolition of the existing well pumping station and construction of a well pump vault with vertical turbine pump over the existing well, and completion of a SCADA system design to monitor and control the water treatment facility and well station.

Background:

Faced with increasing iron and manganese concentrations at two of its existing wells, Concord Public Works (CPW) decided that treatment was required.  Several treatment options were evaluated, with the most cost effective option being pressure filtration.  Piloting pitted manganese greensand against LayneOx, a proprietary media marketed by Layne-Christensen Company utilized in other parts of the country, but not in New England. In addition to proving its effectiveness in iron and manganese removal, “new technology approval” was obtained for the media from MassDEP. Although piloting showed LayneOx to have an advantage over greensand during testing at the Deaconess well site, the Town’s Procurement Office was reluctant to allow CPW to solely specify a proprietary media. Differences in piping and chemical requirements for both filter processes precluded a design that could have served either treatment system. Hence, a pre-purchase equipment bid was developed specifying both systems.

An additional challenge to treating the water was designing the treatment facility itself, whose architecture had to “blend in” with the bucolic and well healed character of the surrounding neighborhood. The Town requested that we provide three options simulating different themes; a barn, railroad station and a Richardsonian Romanesque style structure similar to the Chestnut Hill pump station. Our Architect provided renderings of the three options along with estimated costs and lists of pros and cons. After several meetings and input from various interested parties the Town chose the barn theme.

SaveSave

Waterbury, CT Great Brook Stormwater Culvert

Tata & Howard provided engineering services for design, preparation of a hydrologic and hydraulic report, two easement maps, design submittals for DOT review, construction administration, and resident observation for the rehabilitation of the Great Brook Stormwater Culvert under Cherry Street in Waterbury, CT. The project provided for the replacement of about 65 linear feet of the existing structurally deficient top to the Great Brook Stormwater Culvert under Cherry Street and adjacent private properties.

The existing steel beams, corrugated metal arches, and bituminous concrete or concrete slabs forming the top of the culvert were removed and precast concrete beams were placed on elastomeric bearing pads to form the replacement culvert top. Additionally, about 50 linear feet of the existing eroded cobblestone bottom were removed to a minimum depth of 12 inches and replaced with reinforced cast in place concrete.

Further, approximately 32 linear feet of undermined walls (16 linear feet on the west side and 16 linear feet on the east side) were excavated, with cast in place concrete placed below the existing culvert masonry walls. The interior culvert masonry walls within the project limits were also repointed. The work required the reconstruction of 30 feet of Cherry Street, the adjacent sidewalks, and approximately 750 square feet of a private gravel parking lot property. During construction, a water control system capable of conveying normal flow capacity of the Great Brook Stormwater Culvert at Cherry Street was maintained.

waterbury-ct-great-brook-culvert-grouped