Shared WW Treatment Facility Improvements Whitepaper

wastewater treatment facility improvements whitepaper

Abstract: The Towns of Canaan, Vermont and Stewartstown, New Hampshire operate a shared wastewater treatment facility, which required significant upgrades. The existing facilities were 40 years old and although a few upgrades were performed in the 90s, the facilities were not performing well, did not meet Life Safety codes, and required significant maintenance. The economical upgrade met all of the goals of the Client by providing for simple operation and maintenance requirements, meeting the Life Safety codes, eliminating confined spaces, lowering of electrical power costs, and meeting discharge parameters through production of high quality effluent.

The Importance of Energy Efficiency in Water and Wastewater Treatment – Case Studies

As those in the industry well know, water and wastewater treatment plants use an exorbitant amount of energy. In fact, 30-40% of total municipal energy consumption is due to water and wastewater treatment plants. In addition, energy currently accounts for 40% of drinking water systems’ operational costs and is projected to jump to 60% within the next 15 years. This excessive energy consumption places financial burden on already stressed water and wastewater utilities struggling to keep up with ever-increasing regulations and demand.

MBR membrane installation

The Electric Power Research Institute (EPRI) conducted studies on wastewater treatment plants and cautions that as treatment requirements increase, energy requirements will also increase. EPRI also projects that as treatment requirements increase, the energy required to treat wastewater utilizing conventional technologies will increase exponentially. For example, new membrane bioreactor (MBR) processes actually consume 30-50% more electricity than plants that utilize more advanced treatment with nitrification. Also, plants that incorporate nanofiltration or reverse osmosis to meet stringent effluent utilize nearly twice the energy. EPRI further projects that strict nitrogen and phosphorus removal will be increasingly required, necessitating the incorporation of these energy-intensive technologies.

And let’s not forget the environment. Drinking water and wastewater systems add over 45 million tons of greenhouse gases annually, contributing to the already problematic issue of climate change. Bringing the issue full circle, climate change directly affects both the availability and the quality of our drinking water supply. The importance of incorporating energy efficiency into water and wastewater operations is paramount to these systems’ future sustainability.

Case Studies

Canaan, VT and Stewartstown, NH Shared Wastewater Treatment Plant Upgrades

The new Canaan, VT Stewartstown, NH shared wastewater treatment plant

The Towns of Canaan, Vermont and Stewartstown, New Hampshire operate a shared wastewater treatment facility, which required significant upgrades. The existing facilities were 40 years old and although a few upgrades were performed in the 90s, the facilities were not performing well, did not meet Life Safety codes, and required significant maintenance.

One of the primary elements of the design was the consideration of the economics of energy reduction.  The design incorporated insulated concrete form construction for the building walls with R-49 insulation rating in the ceilings.  The design also included a wood pellet boiler with a pellet silo and hot water heating system, which allowed for reduction of explosion proof heaters in the headworks building.  All of the windows were low-E and highly insulated, and an outer glassed-in entry way increased the solar gain retention of the building and reduced heat loss.  The process headworks and operations buildings were constructed as single story structures, increasing operator safety.  The lagoon aeration system is now a fine bubble, highly efficient process with additional mixing provided by solar powered mixers that help reduce aeration requirements, improve treatment, and allows for the addition of septage, all at no cost due to solar power.

Solar mixers for lagoons

The pump station upgrades were designed to eliminate daily confined space entry by the operator by the conversion to submersible pumps.  For sludge removal, a unique and simple “Sludge Sled” system was incorporated, which allows the operators to easily remove the sludge at their convenience. Sludge treatment is accomplished with a geo-bag system that allows the sludge to be freeze dried, reducing the volume by almost 50% with no energy consumption. The influent pump station was designed with three pumps instead of the normal two-pump system in order to meet both present and future design flows, allow for lower horsepower pumps, improve flexibility, reduce replacement costs, and reduce energy costs.   The other four deep dry pit pump stations were converted to wet wells and submersible pumps, eliminating confined spaces, and are equipped with emergency generators, eliminating the need for operator attention when power is lost.

The incorporation of highly energy efficient building components resulted in reducing annual operation and maintenance costs, which resulted in a more sustainable facility. All of the equipment and processes were thoughtfully selected to reduce both annual and future replacement costs.

wastewater treatment facility improvements whitepaper
Click above to download the complete whitepaper on this important project.

The treatment system is a 3-cell aerated lagoon system, and the solar powered mixers were installed to enable reduction of the aeration needs and horsepower during the summer months when septage is added.  The aeration blowers, which are housed in insulated enclosures, reduce noise and were sized to allow for the addition of septage to the lagoons, which is not common in Vermont.  The aeration blowers are controlled with Variable Frequency Drives (VFDs), which allow for greater operator control of aeration and provide energy cost savings. The operation is simple and safe for operators and others who need to maintain the facility and equipment.  The design has provided flexibility to the operators and has resulted in an energy efficient, sustainable solution for this community.

The project received an Engineering Excellence Merit Award from the American Council of Engineering Company’s Vermont Chapter in 2017.

Shrewsbury, MA Home Farm Water Treatment Plant Design

Excavation for the new 7.0 mgd Home Farm Water Treatment Plant began in July 2017

The Home Farm Water Treatment Plant (WTP) in Shrewsbury, Massachusetts was originally constructed in 1989. Although the WTP is still fully functional, its treatment capabilities are limited to chemical addition and air strippers for VOC removal, and the plant is capable of treating 6.0 million gallons per day (mgd). Manganese is present at all Home Farm wells, with widely varying levels from a low 0.03 parts per million (ppm) to a high 0.7 ppm. The existing treatment plant sequesters manganese, but does not have the ability to remove it from finished water.

Three treatment methodologies were piloted. The first two were greensand and pyrolucite, both commonly implemented catalytic media options for removing manganese and iron. The third was Mangazur®, a new technology. Mangazur® filter media contains the microscopic organism leptothrix ochracea, which consumes manganese and is naturally occurring in groundwater. Through consumption, the microbes oxidize the manganese to a state where it can precipitate onto the media. Unlike other media, Mangazur® does not require regeneration due to the continuous growth of microbes within the filter. Mangazur® technology also does not require chemical addition for pre-oxidation, minimizing the amount of chemical required for the plant.

Pilot testing for the biological treatment was performed over five one-week trials. Test parameters included a long shut-down on the filters, adding pre-oxidant, and adjusting pH or dissolved oxygen. The results of the testing indicated that although the Mangazur® does require a correct dissolved oxygen level and pH, it does not require a pre-oxidant, making the only chemical addition necessary for pretreatment potassium hydroxide for pH adjustment. Filter backwash efficiency is also a major benefit of the Mangazur® technology for the Home Farm application. With loading rates twice that of traditional catalytic media and filter runs exceeding 96 hours, the Town would only need to backwash the four filters once every four days rather than eight filters every day, saving a significant amount of water. The backwash flow rate and duration are also significantly lower for Mangazur® filters than for other traditional filter options. The results of the pilot tests indicated that all technologies were viable options to reduce manganese levels below 0.05 ppm; however, the biological treatment was the most efficient option.

Since the existing chemical feed equipment in the plant is aging and the existing building itself was also in need of rehabilitation, the decision was made to construct an entirely new standalone 7.0 mgd facility. The new facility will feature many energy efficient features including translucent panels for lighting efficiency, high efficiency water fixtures, high efficiency lighting, and stormwater bioretention areas for drainage.  In addition, while the existing building will be demolished, the concrete slab slab will be kept for future installation of solar panels. The new facility also contains three deep bubble aerators for VOC removal. While Mangazur® technology has been approved in one other municipality in Massachusetts, there are few treatment plants in the northeast using this technology, and of those treatment plants, none have a design capacity above 5.0 mgd.  Home Farm has a much higher design capacity and will be the largest Mangazur® water treatment plant in the northeast once completed.  The Mangazur® filters at Home Farm will have the second highest design capacity in the country, after a 26.0 mgd treatment plant in Lake Havasu City, Arizona.

Download the complete whitepaper on the Mangazur™ Home Farms Water Treatment Plant here.

Flagstaff, AZ Water Reclamation Facility Upgrades

Tata & Howard provides on-call engineering services for water, wastewater, and energy related projects for the City of Flagstaff, Arizona. Several options for replacement of the blowers were evaluated and presented to the City in a report that recommended the installation of appropriately sized turbo blowers and upgrading the controls logic to automate dissolved oxygen controls.

The City had been experiencing long term maintenance issues with the existing biogas piping at the Wildcat Wastewater Reclamation Facility. The piping to the co-generator was not providing an adequate supply of gas from the digesters which, if operating, could save the City approximately $200,000 in annual power costs. The goals of this project were the restoration of the ability to run the generator on biogas, utilize the heat generated by the sludge digestion process to further reduce energy costs, reduce maintenance time to operate the biogas system, and have a positive impact on the environment, since methane is one of the most potent greenhouse gases.

Wastewater treatment plant in Flagstaff, AZ

In addition, Tata & Howard conducted an energy efficiency study on the aeration blowers and pumps at two treatment plants. Pumping systems had efficiencies as low as 20%. Pumps and blowers were oversized to meet peak and future demands but not efficient at low flows or off peak flows. The testing showed that modifications to these systems had the potential to save the City approximately $250,000 in annual electrical costs and $445,000 in APS rebate funds for the modifications.

Download a case study on the energy efficiency project in Flagstaff, AZ here.

In Conclusion

While these three case studies are all extremely different projects, the goals are the same: increased energy efficiency, greener operations, and sustainability, all while meeting project objectives, budgets, and deadlines. Increasing energy efficiency in water and wastewater treatment is no longer optional; rather, it is a necessity to remain operational by meeting both budgetary and sustainability objectives. By incorporating innovative thinking and tailored methodologies into rehabilitation and repair projects, water and wastewater systems can ensure sustainable operations and a greener environment while protecting our world’s most precious resource for generations to come.

SaveSave

SaveSave

Jerald Postema Joins Tata & Howard as Client Service Specialist

Seasoned water and wastewater expert enhances and expands key service offerings in the southwest for growing environmental firm

Tata & Howard, Inc. is pleased to announce that Jerald A. Postema has joined the firm as Client Service Specialist. Mr. Postema brings over 44 years of water and wastewater operations and management experience to the team and will lead the firm’s business development efforts in the southwest. He is working out of the company’s Goodyear, Arizona office.

“I am thrilled to join the Tata & Howard team to help grow the firm’s presence in Arizona,” commented Postema. “In the past, I have worked with Tata & Howard as a client, and therefore know first-hand the technical quality and innovation that they bring to the table, and the exceptional client care they provide. I am excited to bring this exemplary level of service and commitment to water and wastewater systems in the southwest.”

“Jerry is a key addition to the Tata & Howard team,” stated Karen L. Gracey, P.E., Co-President of Tata & Howard. “His wealth of experience with the business and management side of water and wastewater operations strengthens our innovative Business Practice Evaluation services. The demand for these services led us to search for someone with an extensive water and wastewater business and operational background who would embrace our culture of innovation and service, and we feel extremely fortunate that we were able to find someone with such unparalleled credentials and integrity as Jerry.”

Mr. Postema holds licenses in the State of Arizona for Water Distribution Systems, Classification 4; Water Treatment Systems, Classification 4; Wastewater Collections, Classification 2; and Wastewater Treatment, Classification 2. Prior to joining Tata & Howard, Mr. Postema served as Public Works Director for the City of Tualatin, Oregon, Environmental Services Manager for the City of Goodyear, Arizona, Public Works Director for the City of Grandville, Michigan, and Administrative Services Officer for the City of Grand Rapids, Michigan. In addition to his extensive water and wastewater operations and management experience, Mr. Postema received the AWWA Silver Drop Award and the Michigan Section AWWA Edward Dunbar Rich Service Award, has served as Vice Chairman of Grand Haven Area Wide Recreation, Chair of the Public Awareness Committee, Grand Haven Township Parks Board, and Ambucs Hospital Equipment, Board Member of the Grandville Parks and Recreation Department, and Member of the Northwest Ottawa Water Executive Committee, the Grand Haven/Spring Lake Wastewater Authority, the Ottawa County Townships/Road Commission Planning Organization, and the Grand Haven Township Bicycle Path Committee. He is currently a member of the AZWater Distribution Committee, AZWater Wastewater Treatment Committee, American Water Works Association, Water Environment Federation, American Society for Public Administration, and American Public Works Association.

Jerry may be contacted at jpostema@tataandhoward.com or 480-417-2149.

SaveSave

Prioritizing Asset Management in Ontario, Canada

water-infrastructureEach municipality and utility is responsible for making sure that its assets, including water, wastewater, and/or stormwater systems, stay in good working order, regardless of the age of its components or the availability of additional funds. This requirement makes properly maintaining and monitoring assets paramount. With limited resources, an asset management plan can help municipalities and utilities maximize the value of their capital as well as their operations and maintenance dollars. Asset management is a scalable approach that can be utilized by all types of systems, of any size.

A Nation’s Infrastructure in Crisis

The 2016 Canadian Infrastructure Report card states that over one-third of Canada’s municipal infrastructure is in fair, poor, or very poor condition, and at risk of rapid decline. With the support of the federal government, Ontario municipalities are embarking on an unprecedented renewal phase of these critical assets, recognizing that Canadians rely on this infrastructure for their quality of life.  The Ministry of Infrastructure released its guide to asset management planning and has made funding available to small, rural, and northern municipalities in Ontario to develop and implement asset management plans.

In addition, as part of the New Building Canada Plan, the renewed federal Gas Tax Fund (GTF) was announced in the 2013 Economic Action Plan as a long-term, stable source of funding for municipal infrastructure. Implemented as a means of addressing the infrastructure funding gap, the GTF will provide $10.4 billion to Canada’s municipalities through 2018. Because Canada recognizes the criticality of an up-to-date asset management plan, the renewed GTF prioritizes long-term capital planning and asset management. The Province of Ontario has moved a step further, actually requiring each municipality to build and implement an asset management plan.

Setting Rates Based on Sound Financial Planning

water-funding It is apparent that financial planning for municipalities and utilities must be based on sound asset condition projections from an engineering and operations perspective – not just financial assumptions. Customers are often adamantly against rate and tax increases; however, these sometimes-unavoidable increases are easier for customers to understand — and accept — when they are backed up with clear data showing exactly what system improvements are needed and why. There are many costs associated with municipality and utility operations and maintenance. One of these is the cost of asset ownership, a cost element not currently present in the audited financial statements of many municipalities and utilities. An asset management approach can aid municipalities and utilities in understanding the true costs associated with ownership and operation along with complying with government regulations.

Budgeting Focused on Critical Activities

An asset management program helps to identify exactly what maintenance and repair work is necessary, eliminating guesswork. Targeting municipalities’ admittedly limited funds to pipes, roads, structures, and other critical assets that are most in need of rehabilitation or replacement, rather than randomly selected  assets, allows municipalities to stretch their infrastructure dollars and to proactively avoid critical asset failure. This methodology also creates the opportunity to utilize the savings to accomplish other system goals. Examples of the opportunities are as follows:

Meeting Consumer Demands with a Focus on System Sustainability

ontario-manhole-coverFinding and detecting failures such as leaks in the system can prevent water loss as well as reduce energy consumption of treating and pumping water that never makes it to the customer. Reducing water loss eases demand on water systems, allowing for smaller, lower cost infrastructure and reducing water shortages. Also, reduced energy consumption allows systems to run greener and more cost-effectively. Thoughtful investments in critical assets can extend the life of those assets by several years, providing a significant return on investment. And by maintaining critical assets rather than prematurely replacing them, customers enjoy better, more consistent service for lower cost.

Better Data Management

Through accurate data collection, municipalities and utilities can expect significant benefits from an asset management approach. Collecting, sharing, and analyzing data about a distribution system helps utilities make better informed decisions on maintaining, rehabilitating, and replacing aging assets. Utilities can also use this data to better communicate with their governing bodies and the public. In addition, asset management helps communicate information across departments and coordinate planning and decision-making related to infrastructure needs and improvement plans.

In Conclusion

There is a difference between a cost and an investment, and asset management is a true investment in municipalities’ and utilities’ future.  It helps systems to provide better service at a lower cost with reduced risk and improved financial planning options. Asset management results in better decision-making and supports the long-term success of a municipality or utility’s mission, goals, and objectives. With Ontario’s groundbreaking legislation, municipalities and utilities now have an unprecedented opportunity to improve and rehabilitate crucial assets with the full support of local government.


Rhonda E. Harris, P.E., MBA, WEF Fellow, IAM Certified

Rhonda E. Harris, P.E., MBA, WEF Fellow, IAM Certified
Vice President and Global Director of Asset Management

Rhonda has over 40 years of experience in managing and administering a variety of facilities and programs in the water environment industry. She has been actively involved on an international level in addressing issues of water and sanitation through leadership and participation in the top water professional organizations in the world. As a Past President of WEF, an elected member of The International Water Academy (TIWA), an Honorary Member of the American Water Works Association (AWWA), a member of the Executive Committees of LakeNet and The Inter-American Water Resource Network (IWRN), and participant in a number of additional non-governmental organizations (NGOs) in the water sector, she has worked for change and improvement of the global water environment for many years. She holds a B.S. degree in Civil Engineering from the University of Texas at Arlington, and an M.B.A. degree in Business Administration from Southern Methodist University.

Rhonda can be reached at 214-697-0109 or rharris@tataandhoward.com.

SaveSave

SaveSave

T&H Celebrates the Holidays!

holiday-2016-all-employees
T&H’s annual holiday celebration was held on Tuesday, December 20, and it was a big success with food, gifts, and some fun competition. We were excited to have several fellow employee-owners from our satellite offices join us for the holiday fun.

img_1014
T&H employee-owners enjoying a catered Italian luncheon as they celebrate the holidays

Drawing numbers out of a hat, employee-owners crossed their fingers for our gift giveaway. There were several awesome gifts ranging from gift cards to Bose speakers. Congratulations to our grand prize winner, T&H Project Environmental Scientist James DeAngelis who won an Apple watch!
img_1037

img_1067
T&H Project Environmental Scientist James DeAngelis showing off his new Apple watch.

Employee-owners also participated in a friendly dessert competition. Project Manager Amanda Cavaliere won best homemade dessert with for her amazing custard trifle. For best store bought dessert category, IT Manager James Field stole the show with a delicious tiramisu. The best presentation category went to Engineer Keighty Tallman, who impressed everyone with her creative gingerbread teddy bears.
img_1025
Like every year, this year’s holiday celebration was a great time with a lot of laughs. From our family to yours, Happy Holidays!

Giving Thanks – for Water!

It is widely known how important water is to our lives and the world we live in. Our body and planet is comprised of about 70% water – making it seem like it is easily accessible and plentiful. However, when you rule out our oceans and ice caps, less than 1% of all the water on Earth is drinkable. Of that less than 1%, groundwater only accounts for 0.28% of fresh water around the globe. Safe drinking water is a privilege we often take for granted while we brush our teeth or drink a glass of water in the morning. While we are giving thanks to our family, friends, and food during Thanksgiving, we should also give big thanks for our clean drinking water and the people who make it happen.

The Importance of Clean Water 

hauling_water_in_malawi
Villagers in Malawi travel miles to find and transport water which is rarely safe for human consumption.

Keeping yourself hydrated can do wonders for your health. The benefits water provides for our bodies range from relieving headaches, flushing toxins out of the body, improving mood, helping with weight loss, and relieving fatigue. In the U.S., we are fortunate enough to have some of the cleanest drinking water anywhere in the world to keep us healthy and safe. In other countries and for some 783 million people, that is not the case. Many do not have access to sufficient drinking water and the water they do have often contains dangerous pathogens. Often, unclean water sources are miles from villages and some people are forced to spend hours each day simply finding and transporting water. The typical container used for water collection could weigh between 40 and 70 pounds when filled. Imagine how difficult it would be to carry the equivalent of a 5-year-old child for three hours out of each day just to have water to drink. With so many people not having access to clean drinking water around the world, it is important to appreciate the plentiful and safe drinking water we have here in America.

W_WW_treatment_INFOGRAPHIC
A visual diagram of water and wastewater distribution systems. Click the image to see full size.

A Special Thanks for the People Who Make Our Water Safe

When looking at America’s clean water, it is especially important to give special thanks to the water and wastewater utilities that work nonstop to give us some of the cleanest drinking water in the world. Despite the fact that our country has beautiful rivers and lakes, the water that comes from them to our taps goes through several processes that require a lot of work and maintenance. Our water and wastewater utilities maintain some of the highest standards in the world when it comes to drinking water, and new innovations for treatment and distribution are always being researched and implemented. Water and wastewater employees work tirelessly to meet regulatory requirements and preserve local waterways despite major setbacks like deteriorating infrastructure and shrinking funding for necessary projects. On top of treating our water, utilities are responsible for keeping their distribution systems running efficiently and also to being stewards to the environment through improving effluent quality. Our water utilities are arguably the most important utilities in the nation because water is so crucial to our survival.

In Conclusion

We are so incredibly fortunate here in the United States to not have to think twice about the purity of water from the tap, a glass of water in a restaurant, a highway rest stop, an airport, or motel – all thanks to our water and wastewater utilities. For that, we should be especially thankful. This Thanksgiving, be sure to give special thanks for having safe drinking water and to the dedicated, hard-working people at water and wastewater utilities.

Tata & Howard Hires Steve Landry, P.E. as Vice President

Tata & Howard Hires Steve Landry, P.E. as Vice President

Steve Landry, P.E., Vice President
Steve Landry, P.E., Vice President

Seasoned civil engineering professional brings extensive water and wastewater experience to the firm

Tata & Howard is pleased to announce that Steve J. Landry, P.E. has joined the firm as Vice President. Mr. Landry brings over 36 years of targeted water and wastewater engineering consulting experience to the team and will lead the firm’s wastewater work. He is working out of the company’s corporate office in Marlborough, Massachusetts.

“I am excited for the opportunity to lead Tata & Howard’s highly talented wastewater team,” commented Landry. “The firm is well known in the industry as a leading provider of top notch water and wastewater engineering solutions, but their high level of integrity, innovation, and collaboration is what truly sets the firm apart.”

“As our firm continues to experience unprecedented growth, it is critical that we enhance our team with individuals who are both technically adept as well as highly disciplined,” stated Donald J. Tata, P.E., President of Tata & Howard. “Steve’s technical mastery and profound level of integrity make him a perfect fit for the firm. Bringing him on board will allow us to enhance our current services, increase our client base, and continue to be the industry benchmark for providing innovative, cost-effective water and wastewater engineering solutions.”

In addition to his extensive consulting experience, Mr. Landry has served on the Board of Directors of the National Society of Professional Engineers and as President of the Rhode Island Society of Professional Engineers. He has also served as Chair of New England Water Environment Association’s CSO and Wet Weather Issues Committee. He holds a Bachelor of Science degree in Civil Engineering and a Master of Engineering degree in Water Resources from Clarkson University.

Imagine a Day Without Water 2016

idww2016highdef2idww16_twitter_economyImagine a day without water. Nearly every single thing we do is reliant on water. Right at the start of our day, we would not be able to use the bathroom, take a shower, brush our teeth, or make a cup of coffee. There would be no cleaning dishes, mopping floors, or cooking food. Water is something we use constantly throughout the day without even thinking about it, and has therefore become something we take for granted. For that reason, Imagine a Day Without Water was first introduced in 2015 in order to bring awareness to the value of water.

Think about how frustrating it is when our internet or cell phone service is interrupted. Having no signal or losing WiFi on our laptops can grind work to a halt, as well as bring about headaches and aggravation — but it doesn’t actually affect our health or our lives. And yet, in America we pay approximately $50 per month for internet, $75 per month for our cell phone bill, and a whopping $100 for the luxury of cable television. Ironically, the average monthly water bill is only about $30, and people often bemoan the fact that the cost of water has been increasing in recent years. The reality is that providing safe, clean drinking water and treating our wastewater is extremely complicated – and costly.

idww16_twitter_mainsThink about the way water enters our homes and businesses, and of how our wastewater leaves it. There are literally thousands of pipes underground that we never see, and many of these pipes are approaching the end of their useful life. After all, most of our infrastructure was built around the time of World War II, and is now over 70 years old. In fact, much of the infrastructure in New England is well over 100 years old. These pipes and treatment plants are in desperate need of repair and replacement. In addition, our drinking water is treated to meet increasingly stringent regulations that protect our health. Bacteria, toxins, metals, and other harmful substances are all removed from the water prior to it entering the distribution system, and this treatment is expensive. In the same way, the wastewater that leaves our homes and businesses is highly treated and cleaned before it is returned to the environment, protecting public health from the myriad toxins and diseases found in untreated wastewater.

Failing pipes from our aging infrastructure also account for an astronomical amount of clean, treated drinking water that never reaches the consumer, and is never billed. This “lost” water comes at a staggering cost. To put it into perspective, the cost of this lost water is approximately $2.6 billion annually — which is approximately equivalent to the annual amount that the federal government allots to fund our water infrastructure — and the 1.7 trillion gallons of lost water is about the same amount of water needed to fully supply America’s ten largest cities.

idww16_twitter_droughtAnother challenge faced by utilities today is our growing national population combined with historic drought and climate change. This increased demand in the wake of a dwindling supply is placing extra pressure on our water and wastewater systems, and requires thoughtful, long-term solutions if we are going to be able to meet current and future demands. Add to that the recent focus on our nation’s lead service lines and the fact that they absolutely need to be replaced, and it becomes clear that our water and wastewater systems are in desperate need of attention — and investment.

Imagine a Day Without Water is a national movement that is looking to change the way we look at water, which is currently highly undervalued. It is by far the least expensive of all of our utilities, and yet it is the only one without which we cannot live. Consider that the cost to repair our nation’s water and wastewater infrastructure will require an estimated investment of $4.8 trillion over the next 20 years, and it becomes apparent that the time to invest is now. The key to funding our nation’s water and wastewater systems is education and placing the proper value on water. It is crucial that legislators and ratepayers support utilities in their efforts to upgrade and replace infrastructure, to address the funding gap for these critical projects, and to acknowledge and address the water supply challenges that we currently are facing.

idww16_twitter_modernizeWe have reached the point where we must proactively address and invest in our nation’s water and wastewater infrastructure — before it is too late. Imagine a Day Without Water is a day in which we can all spread the word about the value of water by encouraging friends, family, and colleagues to imagine what their lives would be like without water. With proper planning and smart investment from both consumers and our legislators, living without water is something that will never come to fruition in our nation. Join the movement today by participating in Imagine a Day Without Water. For the many no-cost ways in which you can participate, including signing a petition, joining a Thunderclap, and becoming involved on social media, please visit https://imagineadaywithoutwater.org/participate.

Why Water and Wastewater Utilities Must Practice Operational Efficiency

Efficiency-300x209Water and wastewater utilities across the country face common challenges. These include rising costs, aging infrastructure, increasingly stringent regulatory requirements, population changes, and a rapidly changing workforce. While many utilities find themselves turning from one urgent priority to the next, others have implemented effective operational efficiency initiatives that have helped them enhance the stewardship of their infrastructure, improve performance in many critical areas, and respond to current and future demands. Improved efficiency is not just beneficial to a utility’s bottom line – it benefits everyone in a community.

Infrastructure Stability

Utilities who implement operational efficiency understand the condition of and costs associated with critical infrastructure assets. This allows them to maintain and enhance the condition of their infrastructure over the long-term at the lowest possible life-cycle cost consistent with customer, community, anticipated growth, and system reliability goals. Efficient utility management assures infrastructure repair, rehabilitation, and replacement projects are coordinated in order to minimize disruptions in service or other negative consequences.

Enhanced Employee Leadership Development

teamwork-300x181A common problem facing many utilities today is a retiring work force. By implementing operational efficiency now, utilities can recruit and retain a workforce that is competent, adaptive, and correctly trained to take on leadership roles of their own. Through communication and effective training, utility owners and operators can create an organization focused on continual learning and improvement. This ensures employee knowledge is retained and improved upon. Over time, senior knowledge and best practices will be passed along to promote a well-coordinated senior leadership team who understands their system and the needs of its customers.

When employees or operators of water and wastewater systems are knowledgeable enough to solve problems themselves, it allows managers to focus more on the entire utility versus consistently fixing small problems. Managers are then free to focus on internal operations, better management practices, improving water and effluent quality, and other areas of priority.

Managing Reliable Data through Operational Efficiency

Coupled with excellent communication throughout utility staff, data collection is an area of operational efficiency that helps utilities meet demand and plan for the future. With the collection of accurate, reliable data and the tools to analyze the information, utilities can prioritize actions and capitalize on their efforts. This allows them to understand the demands of their service areas and ensure sufficient supply is available. By more efficiently identifying contributors to non-revenue water, such as system leaks, aging assets, and unauthorized usage, utilities can reduce operational expenses and uncover new revenue streams. They can also provide their customers with access to that same set of information, making it possible for them to understand and manage their consumption. This delivers benefits to the entire organization, including billing, customer service, operations, engineering, and distribution, and empowers utilities to address conservation and revenue opportunities.

Reduced Vulnerability to Climate Changes

solution-chalkboard-concept-300x200Some practices that utilities are implementing greatly help to improve resiliency and reduce vulnerability to an ever changing climate. Internal practices and initiatives such as energy conservation, solar energy, and utilizing heat transformed into energy from sewage and digestion have helped utilities rely less on the grid and more on their own operations. This is especially beneficial considering the ever-increasing price of energy. Reducing energy use significantly lowers operational costs for utilities – freeing up dollars for future initiatives or infrastructure improvements. Utilities who practice operational efficiency understand that making internal practices more efficient results in the entire distribution system becoming more efficient.

All Around Flexibility for Utilities

Practicing operational efficiency can greatly improve all around flexibility for water and wastewater systems. Knowing your distribution system and operating it to your specific community’s needs is a huge advantage in dealing with costly dilemmas that occur with infrastructure. In places that see seasonal spikes in water usage, operational efficiency allows a utility to adjust and operate more effectively during peak times as well as during the “off-season.” Practicing operational efficiency also allows a utility to better deal with issues in their distribution system without disrupting service to customers.

In Conclusion

To meet continually increasing challenges, utilities must become more efficient in the way they manage their resources, address demands on their infrastructure, and monitor data throughout their systems. The implementation of improved operational efficiency helps utilities ensure ongoing, timely, cost-effective, reliable, and sustainable performance improvements in all facets of its operations.

Water Crisis in the United States, Part 2: Crumbling Infrastructure

cars driving through flooded road caused by burst water main

Continuing our July theme on water crises in the United States, this week’s article will dive into our nation’s deteriorating water infrastructure — and how we can fix it. America’s infrastructure is in serious trouble, especially our water systems. Although the quality of drinking water in the U.S. remains high, our aging water infrastructure can no longer be ignored. Many of the pipes are over 100 years old and are exceeding their useful life. We experience about 240,000 water main breaks each year, or one every two minutes. These breaks result in 1.7 trillion gallons of clean water wasted annually. If not replaced, these water systems are expected to cost over a trillion dollars in repairs in the coming decades and, more importantly, put people’s health at risk.

The State of Our Infrastructure

Severely corroded pipe
Severely corroded pipe

Every four years, the American Society of Civil Engineers (ASCE) develops a report card that depicts the condition and performance of American infrastructure. Our water and wastewater infrastructure both received a D grade, which is a slight improvement from the 2009 report card which ranked both water and wastewater at a D-.  Despite the subtle improvement, our country has a long way to go to bring our water systems up to date and make them adequate for future demands.

We as citizens have become blind to our failing infrastructure by accepting preventable environmental hazards as the norm. Events such as polluted and toxic drinking water, floods from levee failures, lead contamination, and constant pipeline bursts have become all too common in our nation. It is apparent that there is a pressing need for modernization, reliability, and long-term funding. Despite these alarming scores and figures, we can improve the current condition of our nation’s infrastructure if we take the right steps.

What We Can Do Now

A section of pipe showing extreme clogging
A section of pipe showing extreme clogging

One of the best ways municipalities and water companies can improve and monitor their aging water systems is pipe testing. Testing the strength of pipes provides insight on how likely a system is to fail or leak. Pipe testing also helps to identify areas of a water system needing repairs, which can save millions of gallons of water as well as a lot of money.

Another way to assess a water system is with an annual water audit. Water audits help municipalities and water companies figure out how to address non-revenue water (NRW). NRW is water that is pumped into the system but not accounted for due to leaks, theft, customer metering inaccuracies, and other inaccurate accounting of water use. Effective water audits can reduce the need for facility upgrades and expansions, reduce the need to find additional sources, and help protect public health by reducing the number of entry points for disease‐causing pathogens.

Although pipe testing and water audits assist in monitoring and improving water systems, the real solution is long term replacement through government and legislative action. To do so, we need to accomplish three important goals:

  • Increase leadership in infrastructure renewal. We need bold and compelling vision at the national level if we plan on getting anything done. A way we can make this happen is to tell our legislators to take action.
  • Promote sustainability and ongoing maintenance. Our infrastructure must meet our present and future demands as challenges continue to arise. Our water system problems are not just a one time fix; we need plans in place to monitor and maintain our systems for growing future demand.
  • Develop, prioritize, and fund plans to maintain and enhance our infrastructure. Once funded, infrastructure projects must be prioritized in ways that improve people’s lives and support a thriving economy. Fixing our infrastructure is going to be expensive. We need to prioritize future improvements based on the benefits and demand of the improvements so we can best serve everyone across the country. Everyone deserves clean, safe drinking water.

What to Take Away

faucet-drip-isolated-255x300The truth is, there is too much at stake to keep ignoring our weakening infrastructure. If we do not do something soon, Americans may be in for some serious surprises. Imagine not being able to drink the water that comes out of our faucets or even take a shower without worrying about water borne diseases and bacteria.  If we wish to seriously improve our water infrastructure, we need collaboration from all parties, both public and private. Politicians and lawmakers need to take definitive action and commit to a sustainable and reliable plan to make our water systems safe and adequate for the future. We need to make the condition of our country’s water systems a top priority.